

638 Series

Digital Servo Drive

Product Manual

Additional Supporting Documentation

EASYRIDER[®] Windows - Software

UL: 07-02-09-02

HIPERFACE[®] Feedback System


UL: 07-05-03-02

Product Manual Bus Interface CAN

UL: 07-05-04-02

Product Manual - I/O Interface

UL: 07-05-08-02

Product Manual - Bus Interface DeviceNet

UL 07-09-04-02

Product Manual - Suppression Aids EH

UL: 10-06-03

Product Manual – Serial Tranfer Protocol EASY-Serial

Additional Supporting Documentation

©Parker Hannifin

All rights reserved. No portion of this description may be produced or processed in any form without the consent of the company.

Changes are subject to change without notice.

Parker Hannifin has registered in part trademark protection and legal protection of designs. The handing over of the descriptions may not be construed as the transfer of any rights.

Made in Germany, 2015

		Page
	Most Important Thing First	
Safet	y Precautions	9
1	General Information	11
1.1	System Description	11
•	Special Features of the 638 Servo Drive	
•	Overview of Standard Digital Communication	
•	Determining Criteria for the Utilization of the 638 Drive	
•	Operation Configuration	
1.2	Model Code Combination Possibilities for the Various Communication / I/O - Modules A	
•	Module Slots Layout	
	Module Olois Layout	
1.3	Packaging, transport, storage	
1.4	Dimensions	
•	638A Series	
•	638B Series	
2	Connection Assignments and Functions	
2.1	Insulation Concept	
2.2	Overview of Compact Unit Connections	
•	<u>638A01</u> to <u>638A06</u>	
•	<u>638B03</u> to <u>638B15</u>	
2.3	Assignments Power Connections	
•	Power, Ballast, DC Bus - Connection X60	22
•	24V - Control Supply Voltage X01	
•	Motor - Connection <u>X61</u> Brake / Thermo - Connection <u>X62</u>	
2.4	Feedback Sensor X30	
∠. +	Feedback - Module X300	
•	Feedback Connection X30 (SUB D 09 Socket)	
•	Feedback - Module X300 with Memory	
2.5	Service-Interface COM1 (RS232)	
2.6	Safe Torque Off	
•	Connection Safe Torque Off X11	
•	Connection WITHOUT the utilization of the Safe Torque Off, (STO), function	
2.7	Signal Connection	
•	Control Signal Plug X10 (SUB D25 Socket) Multi-Function X40	
2.8	Incremental - Output	
	Incremental - Input	
•	Stepper Motor Input	
•	SSI-Encoder Interface	
2.9	Fieldbus Interface COM2	35
•	Pinning for RS232	
•	Pinning for RS422/485	
•	Pinning for CAN	
•	Pinning for Profibus DP Pinning for EA5 I/O-Interface (Digital In and Outputs)	
2.10	Fieldbus Interface <u>COM2</u> in Combination with <u>COM3</u> (OPTION SLOT A/B)	
•	Pinning for Interbus S (RP IBS)	
2.11	Fieldbus Interface RP 2CA, 2C8	
•	Pinning CAN1-BUS and CAN2-BUS	
•	Pinning RP 2C8 X120 (with I/O's)	38
_	DIP Switch Position for Option Module RP 2CA and RP 2C8	
2.12	Fieldbus Interface RP CCA, CC8	
•	Pinning CAN1-BUS, CAN2-BUS and RS485	
-	Pinning RP CC8 X120 (with I/O's) DIP Switch Position for Option Module RP CCA and RP CC8	40. 11

Table of Contents

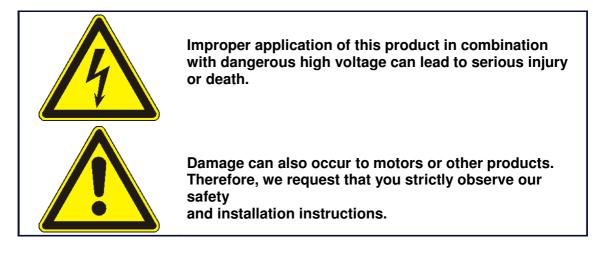
2.13	Fieldbus Interface RP PCA, PC8 Pinning Profibus DP and CAN2-BUS and RS485 Pinning RP PC8 / X120 (with I/O's)	42
-	DIP Switch Position for Option Module RP PCA, PC8	43
2.14	Overview of the Terminal Cross Section	
3	Operating Mode	45
3.1	Operating Mode General	
3.2	Operating Modes and Pin Functions	
3.3	Configurable Pin Functions (Operating Mode Dependent)	
3.4	Functions Diagrams with Protection Mode "Switch Off"	
4	Mechanical Installation	
4.1	Mounting	
4.2	Cautionary Markings	
4.3	Control Cabinet Mounting	
4.4	Cooling and Ventilation	
5	Electrical Installation	51
5.1	Installation General	51
•	Safety	
•	Danger of Electric Shock	
•	Dangerous Areas	
•	Grounding - Safety Grounding	
•	Ground Connections	
•	Short-Circuit Capacity and Discharge Currents	
5.2	Power Mains Connection	
•	Types of power mains	
•	Mains supply voltage range 638A Mains supply voltage range 638B	
•	Protective Ground Connection (PE)	
-	Cable cross section	
•	Dimensioning of power mains cable and the over-current protection	
•	Fault Current Protection	
5.3	DC Link Parallel Connection	
•	General	
•	Variation 1; Servo Drives without DC LINK protection	
•	Variation 2; Servo Drives with DC LINK protection	
•	Function Softstart	61
•	Installation Instructions and Warnings	
•	Layout of the Ballast Capacity	
5.4	Fuses, Contactors	
•	638A	
• 5.5	638B	
5.5	Brake Resistor Selection of the Brake Resistor	
•	Configuration of the Brake Resistor	
•	6	
6	Wiring Instructions	
6.1	Electromagnetic Compatibility (EMC)	
•	Hints for Mounting	
_•	Example for Mounting	
7	Hardware Configuration	
7.1	Jumpers	
•	Power Board Layout Plan 638A	
•	Power Board Layout Plan 638B	70

Table of Contents

8	Commissoning	72
8.1	Commissioning Preparation	72
8.2	Step ①: Wiring and Communications Test	73
8.3	Step 2. :Feedback Test and Motor Selection	74
•	Step 2.2 Motor Selection	
•	Step 2.3 Motor with Resolver Feedback	
•	Step 2.4 Motor with HIPERFACE Feedback Step 2.5 Motor with SIN-COS Feedback Linear Motor	
•		
8.4	Step (3): Power Up and Drive Activation	
•	Step 3.1 Power Up	
•	Step 3.2 Drive Activation	
8.5	Step (4): Control Loop Optimization	78
•	Step 4.1 Control Loop Optimization with Rotary Motors	78
8.6	Step 5: Operation Mode Selection	79
8.7	Step 6. Fieldbus Interface	80
8.8	Step 7 Data Save	
9	Safe Torque Off (STO)	
9.1	General Introduction	
•	Important Technical Terms and Explanations	
•	Stop Category according to EN 60204-1 (Chapter. 9.2.2)	
•	Applications in Accordance with the Regulations	84
•	Trained Personnel	
•	Benefits with the Employment of the Safe Torque Off Function	
• 9.2	Safety Instructions and Limitations Safe Torque Off Function, (STO)	
9.2	Block Circuit Diagram	
•	Status Diagram and Function of Terminals STO1# und STO2#	
9.3	Configuration and Parameter Settings	
9.4	Application Example of STO (Safe Torque Off)	
•	Application Example 1	
•	Application Example 2	
•	Application Example 3 Application Example 4	
9.5	STO Function Test	
9.6	Signal Inputs Technical Data - Terminal Connection X11	
10		
-	Diagnosis and Trouble-Shooting	
10.1	7-Segment-Display Reset of a Drive Trouble	
10.2 10.3		
	Trouble-Shooting	
11	Standards and Certifications	
11.1	Compliance with Regulations, Limitations and Basic Conditions	
11.2	Conditions of utilization for UL certification 638A	
11.3	Conditions of utilization for UL certification 638B	110

Table of Contents

12	Technical Data	111
12.1	General Technical Data	
•	Power Circuit	
•	Control Circuit	111
•	Signal Inputs and Outputs - Connection X10	111
•	Analog - outputs A	112
•	Thermo-Control X30	
•	Thermo-Control X62	
•	Brake-Control X62	
•	Signal Inputs and Outputs - Connection X120B resp. 120C	
•	Digital Control	
•	Digital Communication	
•	X30 Resolver Evaluation / Transmitter Principles	
•	X30 Endat Evaluation	
•	Controller System	
• 12.2	Mechanical Data Technical Unit Data	
12.2	638A	
•	Output Power 638A	
•	Singlephase and Threephase supply	
•	638B	
•	Output Power 638B	
13	Software	121
13.1	EASYRIDER [®] Windows - Software	121
13.2	Introduction BIAS Editor	122
•	Program layout	123
•	Execute a BIAS program	
•	Execute a PLC program	124
•	Execute a Mathematics program	124
13.3	BIAS – Commands	125
14	Appendix	126
14.1	STO - Safety - Parameter - Report - Proposal	
15	Memo	127
16	Modification Record	128
· -		



Thank you for your confidence in choosing our products.

These operating instructions are intended to provide an overview of the technical data and features of our products.

Please read the operating instructions completely before operating the product.

Should you have any questions, please contact your nearest service representative.

Safety Precautions

We assume that as an expert, you are familiar with and will observe all of the relevant safety regulations, especially in accordance with VDE 0100, VDE 0113, VDE 0160, EN 50178, the accident prevention regulations of the employer's liability insurance company and the DIN regulations.

Additionally, it is imperative that all relevant European Union Safety Directives be observed.

Depending on the type and location of the installation, additional regulations, e.g. UL, DIN, must also be fully observed.

If our products are operated in connection with components from other manufacturers, their operating instructions are also subject to be strictly observed.

Digital servo drives, corresponding to EN 61800-5-1/VDE 0160, are electronic power components utilized for the regulation of the flow of energy in high-voltage electrical power installations. They are exclusively designed, configured and approved to supply our servo motors. Handling, installation, operation, and maintenance are only permitted under the conditions of and in keeping with the effective and/or legal regulations, regulation publications and this technical document.

The operator must make sure that these regulations are strictly followed.

The Concept of Galvanic Separation and Insulation:

Galvanic separation and insulation corresponding to EN 61800-5-1/VDE 0160, provides for additional insulation protection.

In addition, all digital signal inputs and outputs are provided with a galvanic separation utilizing either a relay or an optical coupler. In this way, an increased level of protection against potential interference and a limitation of potential damage due to incorrect connections are provided.

The voltage level must not exceed the designated low safety voltage of 60V DC or 25V AC, respectively, in accordance with EN 61800-5-1/VDE 0160. The operator must make sure that these regulations are strictly followed.

High Voltage! Danger of Electrocution ! Life Threatening Danger !

Certain parts of the servo drive are supplied with dangerous electrical current. Physical contact with these components can cause death, life threatening injuries and/or serious damage to equipment and property.

Hot Surface !

Due to safety considerations and product guarantees, the operator is prohibited from opening the servo drive case. Service, maintenance and repair of our products should only be carried out by specified representatives of the company. Expert configuration and professional installation, as described by this document, are the best way to insure problem-free operation of our servo drives!

Safety Precautions

Please Observe !

Pay Special Attention to the Following:

Permissible Protection Class: Protective Grounding - operation is only permitted when the protective conductor is connected according to regulations. Operation of the servo drive when employing a residual current operated protective device as the sole protection against indirect touching, is not permissible.

The servo drive may only be used in conjunction with machines or electrical systems when placed in control cabinets which comply with EEC- Directive2006/42/EG (Machine Directive) and EEC Directive 2004/108/EC (EMC – Directive).

Work on or with the servo drive may only be carried out with insulated tools. Installation work may only be done in a de-energized state. When working on the drive, one should not only block the active input, but also separate the drive completely from the main power connection.

CAUTION - Risk of Electrical Shock:

Wait 3 minutes after switching the component off to allow the capacitors to discharge.

Screws sealed with varnish fulfill an important protection function and may not be tampered with or removed.

It is prohibited to penetrate the inside of the unit with objects of any kind. Protect the unit from falling parts, pieces of wire, metal parts, etc., during installation or other work in the control cabinet. Metal parts can lead to a short-circuit in the servo drive.

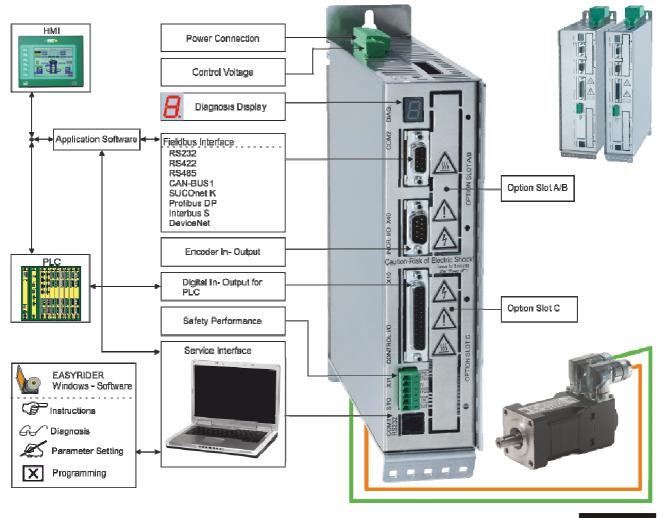
Before putting the unit back into operation, remove any additional covers so that the unit does not overheat. When conducting measurements on the servo drive it is imperative to pay attention to the electrical isolation.

We are not liable for damage which may occur when the product instructions and/or the applicable regulations are not explicitly observed!

!

Note for symbol on device.

The EARTH-symbol 5019. (IEC Publication 417) is marking the grounding bolt.



1.1 System Description

• Special Features of the 638 Servo Drive

- The digital <u>638</u> servo drive provides for the electrical connection, rotational speed and position control of the **AC servo motor**.
- All of the functions and system controls are digitally regulated, employing a **sampling rate of 105µs**.
- The 638 servo drive supports the safety function <u>"Safe Torque Off"</u>, STO, providing for a definitive system shut-down, for protection against an unanticipated start-up, in accordance with the requirements as stated in EN 13489-1, Category 3, Performance Level d and EN1037.
- The feedback generated from the braking energy is dissipated through the employment of internal ballast resistance and when required through the employment of additional external ballast resistance.
- The AC supply voltage can be directly connected or it can be connected through a transformer, as required. (**Important**: only operated on networks which are grounded at the centre point (TN networks)
- The servo drive additionally requires a 24 V DC control supply voltage connection.
- The **built-in internal EMC filter** corresponds to the requirements regarding susceptibility to interference for industrial systems as described in EN50081-1.
- By employing various option modules, through **2 additional plug-in receptacles**, it is possible to increase the potential connections to the **field bus system** and/or the input/output terminals.
- Various motor feedback loop systems can be supported by employing the flexible feedback module X300.
- Through the employment of additional 638 drives it is optionally possible to couple the DC link.
- <u>Minimal Housing Dimension</u> is provided through the intelligent compact design of the unit.

Overview of Standard Digital Communication

1 General Information

• Determining Criteria for the Utilization of the 638 Drive

Decisions relating to the appropriate selection of the motor type, feedback system and drive type, as well as the system layout and option modules required, are dependent upon the specific application and the anticipated operating mode of the system. There are 6 operating modes to choose from:

	😭 Configuration 638 xx	? 🔀
	BA General E Inputs A Outputs GB Motor/×30 ☐ Drive S	3 ×4 • •
• <u>0</u> Seed / Current control switchable via Input X10.24	Drive name: 638 xx	
• <u>1</u> Speed control	Operation mode © <u>0</u> Speed / Current control via X10.24	
• <u>2</u> Current control	1 Speed control 2 Current control	
• <u>3</u> Speed / Position control switchable via Input X10.24	 <u>3</u> Speed / Position control via ×10.24 <u>4</u> Position control without BIAS-execution 	
• <u>4</u> Position control without BIAS – execution	C 5 Position control with BIAS-execution Default	values
 <u>5</u> Position control with BIAS - execution 		
	OK A	bbrechen

• Operation Configuration

There are opportunities ranging from simple current and speed control to programmable position control processes (PLC), supported by the 1500 BIAS command blocks. **"BIAS"** User shell for intelligent drive controls:

See Chapters: "<u>Operation Modes</u>" and "<u>Software</u>"

1.2 Model Code

1

												Special
Marking	а	b	С	d	е	f		g	h	h1	i	i
Type:	638	Х	XX	Х	F	Х		STO	XXX	XXX	XXX	XXX
Marking						Descri	intic	n				
a	638 =	6th, Ge	eneration	Digital Se			plic	///				
b		<u></u>		-igital ee		Siz	e:					
	A =	Size A				В		= Siz	e B			
С	0.1		Current:				_		Rated C			
	01 = 02 =	1,0 am 2,0 am				0		=	2,5 am 5,0 am			
	04 =	4,0 am				0		=	7,5 am			
	06 =	6,0 am					0	=	10,0 am	ps		
	07 =	7,0 am	ps		lt.s.	1		=	15,0 am	ps		
d		638A			Inter	mediat	e vc	638	R			
	3 =		DC / 230 V	AC		3			5 VDC / 2	30 VAC		
	-					6		= 565	5 VDC / 4	00 VAC		
						7			3 VDC / 4			
е	F =		tegrated I						= Standar	-		
	A =		-		side Y-cap	acitato	ors de					
f	0 =		t EMC - C	•				=	= Standar	d		
g	070	-	Performa						Oterrele			
h	STO =		orque Of		RP -XXX o	n tha a	drivo		= Standar	-		
	000 =	No Opt		-module i		in the c	JIIVe		municalio	011 Via <u>CC</u>		
	232 =		2 interface							≅	slot A (A	л, B)
	422 =	-	2 interface								slot A (E	,
	485 =		5 interface								slot A (E	'
	CAN = CCA =	CAN –	<u>виs</u> N + RS 48	25							slot A (E slot B (A	
	CC8 =				l inputs +	RS 485	5				slot B (A	
	PDN =	Profibu									slot B (A	
	IPC8 =				outputs and	d 4 inpı	uts +	- RS 485	5		slot B (A	
	PCA =		IS DP + C								slot B (A	
	EA5 =		terface (5	•						≅	slot B (A	N)
h1	000		•	ns Module	on the dr	ive via	<u>X20</u>	<u>0</u>				
	000 = CCA =	No Opt									alat O*1	
	CCA = CC8 =	2 x CA 2 x CA									slot C*] slot C*]	
	EAE =			4 inputs.	10 outputs	;)					slot C	
i			· Function		5 - 5.00 - 610	1						
	RD2 =				Module 2r	nd Vers	ion	-	= Standar	d ≃	slot D	
	HF2 =				2nd Versio						slot D	
	SC2 =	Sine / 0	Cosine - N	lodule 2n	d Version						slot D	
	DIA				irmware \							
	RM1 = HM1 =				le 2nd Ve Module 2		eion				slot D slot D	
	SM1 =				odule 2nd						slot D	
			irmware \			2.0101	-			_		
	EM1 =	EnDat	+ Memory	- Module						≅	slot D	
j			only when									
	X7x =		band cont									
	BSx =	Moistu	re/Conder	sation Pr	otection							

*Only CAN2 can be employed when utilizing the option module located at slot [C], (internal BUS / COM3 B).

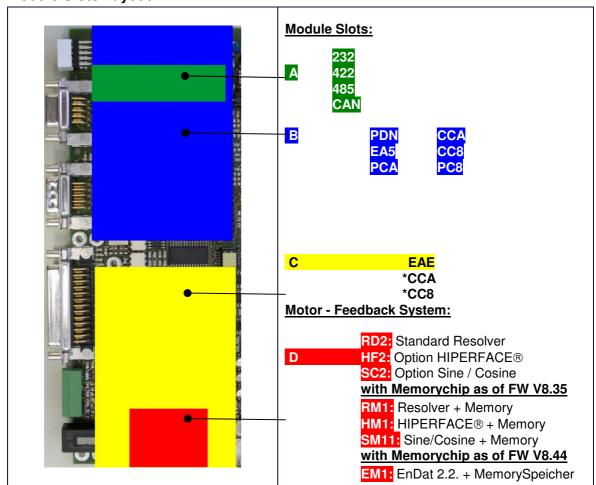
1 General Information

• Combination Possibilities for the Various Communication / I/O - Modules

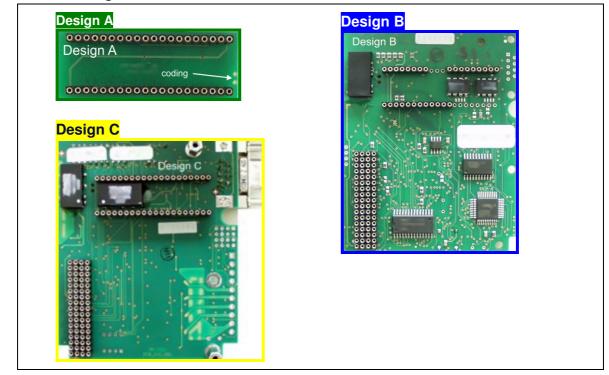
Slot ⇔			4				E	3				С	
Option Module ⇒	2 3	4 2	4 8	C A	C C	C C	P D	E A	P C	P C	E A	*C C	*C C
	2	2	5	N	Α	8	Ν	5	8	Α	Е	Α	8
Model Code 🛛 🕀													
638xxxxFxSTO232000xxx	•	-	-	-	-	-	-	-	-	-	-	-	-
638xxxxFxSTO232EAExxx	•	-	-	-	-	-	-	-	-	-	•	-	-
638xxxxFxSTO2322CAxxx	•	-	-	-	-	-	-	-	-	-	-	•	-
638xxxxFxSTO2322C8xxx	•	-	-	-	-	-	-	-	-	-	-	-	•
638xxxxFxSTO422000xxx	-	•	-	-	-	-	-	-	-	-	-	-	-
638xxxxFxSTO422EAExxx	-	•	-	-	-	-	-	-	-	-	•	-	-
638xxxxFxSTO422CCAxxx	-	•	-	-	-	-	-	-	-	-	-	•	-
638xxxxFxSTO422CC8xxx	-	•	-	-	-	-	-	-	-	-	-	-	•
638xxxxFxSTO485000xxx	-	-	•	-	-	-	-	-	-	-	-	-	-
638xxxxFxSTO485EAExxx	-	-	•	-	-	-	-	-	-	-	•	-	-
638xxxxFxSTO485CCAxxx	-	-	•	-	-	-	-	-	-	-	-	٠	-
638xxxxFxSTO485CC8xxx	-	-	•	-	-	-	-	-	-	-	-	-	•
638xxxxFxSTOCAN000xxx	-	-	-	٠	-	-	-	-	-	-	-	-	-
638xxxxFxSTOCANEAExxx	-	-	-	٠	-	-	-	-	-	-	•	-	-
638xxxxFxSTOCCA000xxx	-	-	-	-	•	-	-	-	-	-			
638xxxxFxSTOCCAEAExxx	-	-	-	-	•	-	-	-	-	-	•		
638xxxxFxSTOCC8000xxx	-	-	-	-	-	•	-	-	-	-			
638xxxxFxSTOCC8EAE xxx	-	-	-	-	-	•	-	-	-	-	•		
638xxxxFxSTOPDN000xxx	-	-	-	-	-	-	•	-	-	-	-	-	-
638xxxxFxSTOPDNEAExxx	-	-	-	-	-	-	•	-	-	-	•	-	-
638xxxxFxSTOPDNCCAxxx	-	-	-	-	-	-	•	-	-	-	-	٠	-
638xxxxFxSTOPDNCC8xxx	-	-	-	-	-	-	•	-	-	-	-	-	•
638xxxxFxSTOEA5000xxx	-	-	-	-	-	-	-	•	-	-	-	-	-
638xxxxFxSTOEA5EAExxx	-	-	-	-	-	-	-	•	1	-	-	-	-
638xxxxFxSTOPC8000xxx	-	-	-	-	-	-	-	-	•	-	-	-	-
638xxxxFxSTOPC8EAExxx	-	-	-	-	-	-	-	-	•	-	•	-	-
638xxxxFxSTOPCA000xxx	-	-	-	-	-	-	-	-	-	•	-	-	-
638xxxxFxSTOPCAEAExxx	-	-	-	-	-	-	-	-	-	•	٠	-	-
638xxxxFxSTO000EAExxx	-	-	-	-	-	-	-	-	-	-	•	-	-
000 = No Opti	on	• F	Poss	ible (Com	binat	tion						

^{*} Only CAN2 can be employed when utilizing the option module located at slot [C], (internal BUS / COM3 B)

Example:


638A043F0STO232EAERD2

638


8	= 6th. Generation Digital Se	ervo Drive
A	= Size A	
04	= 4 Amps Rated Current	
3	= 325 VDC (230 VAC)	
F	= With Integrated Filter	
0	= Without EMC - Clip	
STO	= Safe Torque Off	
232	= RS 232 Interface	≅ on slot A
EAE	= I/O Interface 14/10	≅ on slot C
RD2	= Standard X30 Resolver	≅ on slot D (Motor - Feedback system)
		· · · · · · · · · · · · · · · · · · ·

Module Slots Layout

• Module Design

1 General Information

1.3 Packaging, transport, storage

Packaging material and transport

Caution!

The packaging material is inflammable, if it is disposed of improperly by burning, lethal fumes may develop.

The packaging material must be kept and reused in the case of a return shipment. Improper or faulty packaging may lead to transport damages.

Make sure to transport the drive always in a safe manner and with the aid of suitable lifting equipment (**Weight**). Do never use the electric connections for lifting.

Before the transport, a clean, level surface should be prepared to place the device on. The electric connections may not be damagedwhen placing the device.

First device checkup

- Check the device for signs of transport damages.
- Please verify, if the indications on the **Type identification plate** correspond to your requirements.
- Check if the consignment is complete.

Storage

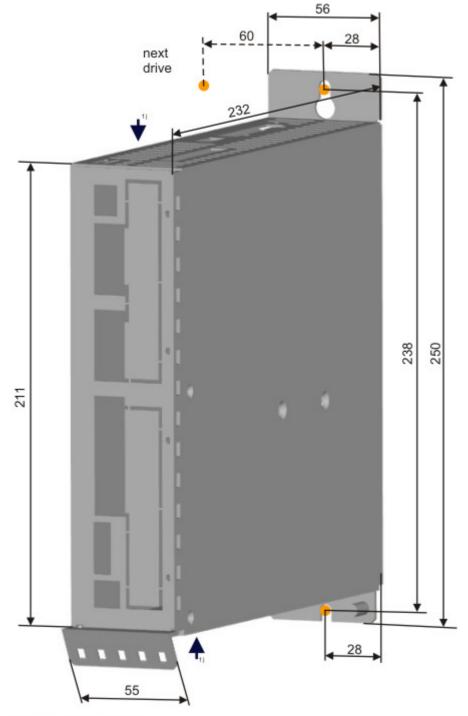
If you do not wish to mount and install the device immediately, make sure to store it in a dry and clean **environment**.

Make sure that the device is not stored near strong heat sources and that no metal chippings can get into the device.

Disposal

This product contains materials that fall under the special disposal regulation from 1996, which corresponds to the EC directory 91/689/EEC for dangerous disposal material. We recommend to dispose of the respective materials in accordance with the respectively valid environmental laws. The following table states the materials suitable for recycling and the materials which have to be disposed of separately.

Material	Option suitable for recycling	Disposal
Metal	Yes	No
Plastic	Yes	No
Circuit	No	Yes
boards		


Please dispose of the circuit boards according to one of the following methods:

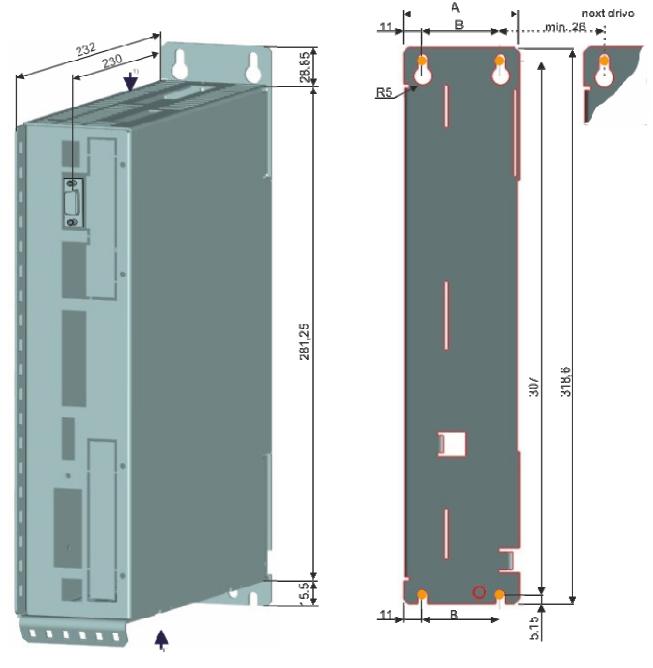
- Burning at high temperatures (at least 1200 °C) in an incineration plant licensed in accordance with part A or B of the environmental protection act.
- Disposal via a technical waste dump which is allowed to take on electrolytic aluminium condensers. Do under no circumstances dump the circuit boards at a place near a normal waste dump.

1.4 Dimensions

• 638A Series

2 x M5 mounting screw

For sufficient air circulation you must a expansion space from 100mm on the inlet- and outlet-cooling


Important:

- Please note that on the front side of the unit, approximately 70 mm of additional space
 - is required for the signal mating plugs!
- > When installing multiple servo drives, there is minimum space on the side.
- > The unit should only be mounted <u>vertically</u> as shown.

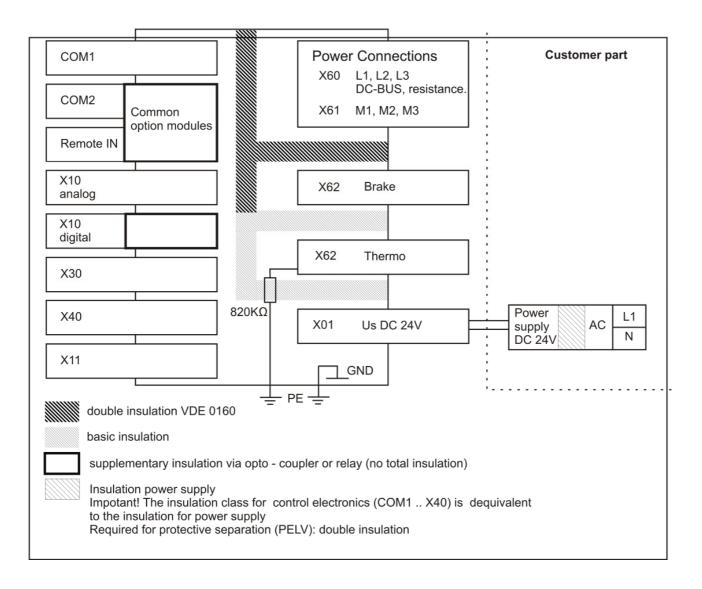
General Information 1

638B Series

- 4 x M5 mounting screw
- For sufficient air circulation you must a expansion space from 100mm minimum on the inlet- and outlet-cooling

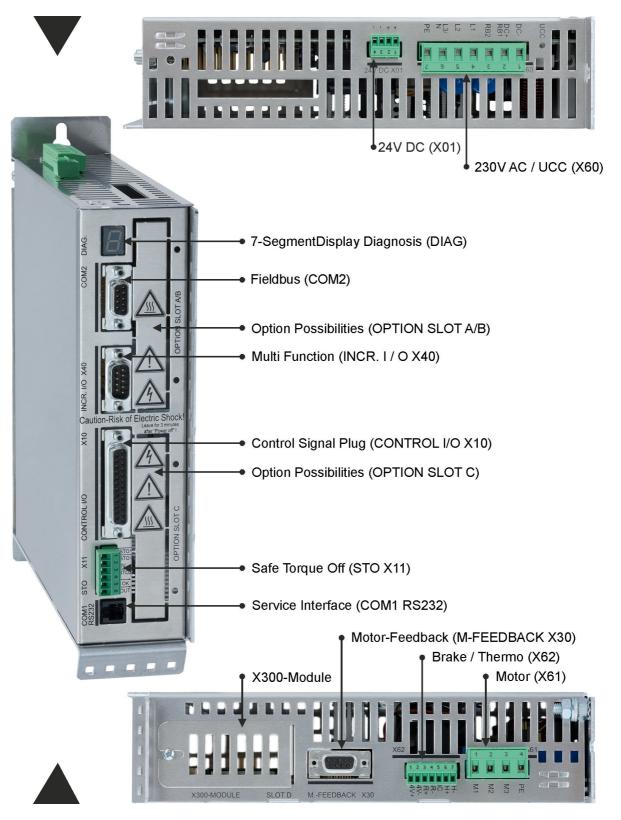
Maßtabelle	A [mm]	B [mm]
638B03 638B05	66	44
638B08 638B15	86	64

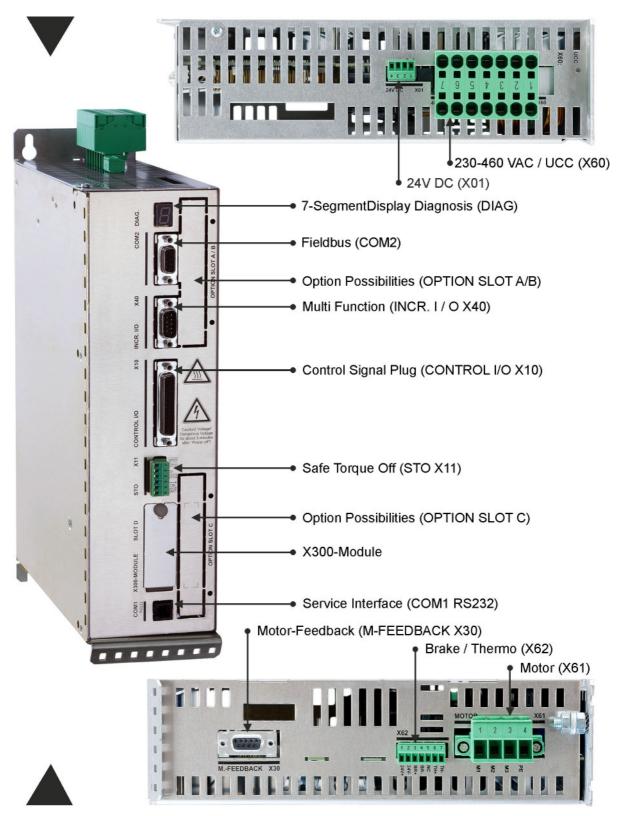
Important:


- lease note that on the front side of the unit, approximately 70 mm of additional space is required for the signal mating plugs!
- When installing multiple servo drives, there is minimum space on the side. The unit should only be mounted <u>vertically</u> as shown.

2.1 Insulation Concept

2


The insulation of the 638 units is achieved in various insulation classes or groups.


2.2 Overview of Compact Unit Connections

• <u>638A01</u>.. to <u>638A06</u>..

• <u>638B03</u>.. to <u>638B15</u>..

2

2.3 **Assignments Power Connections**

Power, Ballast, DC Bus - Connection X60 ۲

6384	A Plug - X60		DC-	
PIN	Designation	Function	DC+ RB1	
1	0VP	0 Volt DC Bus	RB2	
2	RB1/+UCC	External – Ballast Resistor / + DC - Bus		
3	RB2	External – Ballast Resistor	L1	
4	L1	Power Connection 1, 230V AC	L2	
5	L2	Power Connection 2, 230V AC	L3/	
6	L3 / N	Power Connection 3, 230V AC / Ground	W. Course	
7	PE	Protective Ground	PE	

638B Plug - X60

	-	
PIN	Designation	Function
1	0VP	0 Volt DC Bus
2	RB1/+UCC	External – Ballast Resistor / + DC - Bus
3	RB2	External – Ballast Resistor
4	L1	Power Connection 1, 400V AC
5	L2	Power Connection 2, 400V AC
6	L3	Power Connection 3, 400V AC / Ground
7	PE	Protective Ground

24V - Control Supply Voltage X01

Plug	ı - X01	+	
PIN	Designation	+ + + - = = = = = = = = = = = = = = = =	
1	+24V	Supply Us (Input)	241
2	+24V	Supply Us (Output with PIN 1 jumpered)	Setup and Wiring
3	0V	Reference Potential 0V	example
4	0V	Reference Potential 0V	<u>oxampio</u>

Motor - Connection X61

Plug - X61			
PIN	Designation	Function	4
1	M1 / U	Motor Supply	. c
2	M2 / V	Motor Supply	
3	M3 / W	Motor Supply	X61
4	PE	Protective Ground	MOTOP

X60:

Plug	- X62	638A			
PIN	Designation	Function	Function		
1	+24V	Input; Supply Voltage Mechanica	al Brake	R-	
2	0V	Input; Refer. Potential Supply Vo Mechanical Brake			
3	BR+	Control Mechanical Brake	638B		
4	BR-	Control Mechanical Brake	TH-		
5	-	Not assigned	w TH+		
6	TH+	Thermo PTC ¹⁾ /NTC			
7	TH-	Thermo PTC ¹⁾ /NTC	<u>Wiring</u> <u>example</u>	24V+	

• Brake / Thermo - Connection X62

With the connection of the motor temperature sensor at X62 plug you have to change the Temperature supervision parameter in EASYRIDER Menu Configuration Motor from X30 to X62.

¹⁾ With parameter setting PTC also a temperature sensor from Typ KTY (note poling) or a thermo switch can be connected.

For sensor Typ KTY set in EASYRIDER Menu "Configuration Motor / X30 **Switch off at:**" resistor value in Ohm.

For thermo switch set in the EASYRIDER Menu "Configuration Motor / X30 Switch off at:" to the value 1000 Ohm

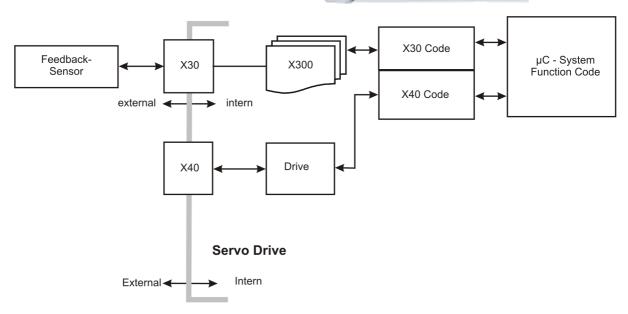
😭 Configuration 6	38 X		? 🔀
BA General E Inp	outs A	Outputs 🙆	Motor/ X30 Drive SX X4 • •
NX310EAP Rated current:	1.33	А	Temp. supervision: 🗙 62 💌
Maximum current:	5.64		Sensor type: PTC/KTY • Switch off at: 1000 Ohm
Rated torque: No. of pole pairs:	1.85	Nm	T1 active at: 1640 Ohm
EMF:	-	V/1000 rpm	Phaseshifting 0 *
Inductance:		mH	Maximum 4000 min ⁻¹ speed: 6.4 A
Resistance:		Ohm sec	Internal counter (sensor)
Inertia:	0.81	kgcm²	Number of pole 1 pairs sensor:
Sensor offset: Rotation direction:	0	·	Resolution: high (14 Bit)
	negative	<u> </u>	Motor library
			OK Abbrechen

2.4 Feedback Sensor X30

The feedback system creates a digital value from the feedback position sensor.

From this value the following is derived:

- Commutation according to the pole division
- Actual rotational speed value
- Position value for the position controller


• Feedback - Module X300

The X30 connection is directly connected to the Feedback - Module X300. The mode of operation of the feedback system is specified by this plug-in module. (see: •_Layout <u>Module Slots</u>) The 638 – Drive system therefore offers a built-in flexibility and provides for the possibility of future modification.

638A

Model Type X300	Description		Documentation
X300_RD2	Resolver	Standard	
X300_HF2	HIPERFACE®	Option	07-02-09-02-E.pdf
X300_SC2	Sine/Cosine	Option	
X300_RM1	Resolver + Memory	Option as of Firmware V 8.35	
X300_HM1	HIPERFACE®+ Memory	Option as of Firmware V 8.35	07-02-09-02-E.pdf
X300_SM1	Sine/Cosine + Memory	Option as of Firmware V 8.35	
X300_EM1	ENDAT + Memory	Option as of Firmware V 8.43	07-02-12-03-EN.pdf
Additional types ava			

Plug and Play

The 638 Servo Drive is able to identify the type of X300 Module employed. The EASYRIDER® Windows – Software loads the correct function code. You follow the instructions in the EASYRIDER® Windows – Software.

For feedback module RD2 the function code is already pre-set (factory default).

• Feedback Connection X30 (SUB D 09 Socket)

2

Pinning for the Motor - Feedback - Socket X30 when employed with:

Resolver Module X300 RD2 or X300-RM1(Standard Module)

Modu	ule: X300_RD2 / X300_RM1	
PIN X30	Function	MFEEDBACK X30
1	-	H 95
2	PTC1) / NTC optional	
3	COS +	
4	sin +	5 6 4
5	carrier +	× V
6	PTC1) / NTC optional	
7	COS -	õ L
8	sin -	Setup and Wiring example
9	carrier -	Cottap and Whing Champic

¹⁾ With parameter setting PTC can you temperature sensor Typ KTY (note poling) or thermo switch used.

EASYRIDER Menu "Configuration Motor / X30 **Switch off at:**" use resistor value in Ohm. For thermo switch is the value 1000 Ohm in the EASYRIDER Menu "Configuration Motor / X30 **Switch off at:**"

🖆 Configuration 638 X 🛛 🔹 👔 🔀					
B _A General E Inputs A	Outputs 🙆	Motor/ X30 🗍 Drive 🖾 X4 💶			
Rated current: 6.4	А	Temp. supervision: 🗙 30 💌			
Maximum current: 25.6	А	Sensor type: PTC/KTY Switch off at: 1000 Ohm			
	Nm	T1 active at: 1640 Ohm			
No. of pole pairs: 3 EMF: 30	V/1000 rpm	Phaseshifting 0			
	mH	Maximum 4000 min ⁻¹			
	Ohm	lo: 6.4 A			
	sec kgcm²	Number of pole 1 pairs sensor:			
Sensor offset: 0	*	Resolution: 16 Bit			
Rotation direction: negative	•	Motor library			
		<u></u>			
		OK Abbrechen			

HIPERFACE® - Module X300 HF2 or X300_HM1

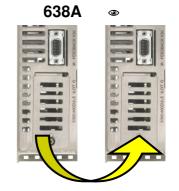
Modu	ule: X300_HF2 / X300_HM1	2
PIN X30	Function	MFEEDBACK X30
1	GND	mi la contra la
2	+10 VDC	四 9 5
3	COS +	
4	sin +	Å
5	data -	Ω - 6 +
6	-	
7	ref cos	
8	ref sin	
9	data +	

Sine / Cosine - Module X300 SC2 or X300_SM1

Modu	ule: X300_SC2 / X300_SM1	2
PIN X30	Function	MFEEDBACK X30
1	GND	mi la contra
2	+5,5 VDC	<u> </u>
3	COS +	
4	sin +	Ä
5	zero pulse -	Ω - 6 +
6	-	
7	ref cos	
8	ref sin	
9	zero pulse +	

ENDAT Modul X300 EM1

Modul	: X300_EM1	2
PIN X30	Function	MFEEDBACK X30
1	GND	m
2	+5,25 VDC	95
3	SENSE 5V	
4	CLOCK/	A
5	DATA/	\mathbf{Q} - 6 t
6	-	
7	SENSE 0V	
8	CLOCK	
9	DATA	

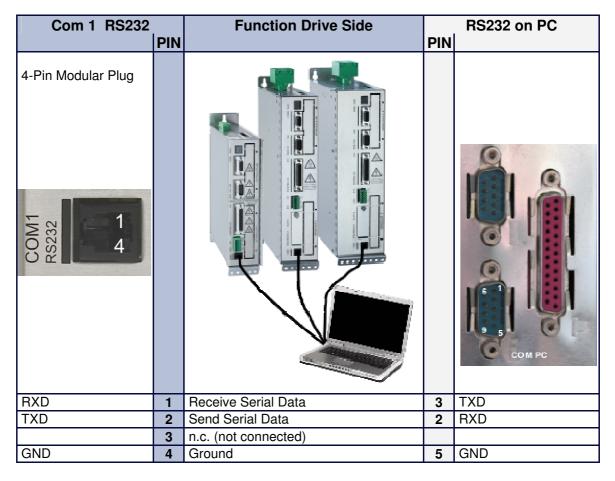

• Feedback - Module X300 with Memory

2

As of firmware version V8.35 the 638 Drive supports the X300-xM-Modules. This module has an additional memory chip (Flash). This flash stores the complete drive data. (firmware, function code, parameters, application program) When a drive is defect the X300-memory module can be replaced with the complete drive data into the new drive.

You need no additional configuration work or software tools.

Requirement: The drive type must be equal (same current)!


Attention during the 1st switch on of the control voltage after the X300 module replacement! After the replacement of the X300 module, make sure that the 1st switch on of the 24V control voltage has no interruption during 60 seconds. The 7- segment-display shows during this time: Image: Control voltage has no interruption during 60 seconds. The 7- segment-display shows during this time: Image: Control voltage has no interruption during 60 seconds. The 7- segment-display shows during this time: Image: Control voltage has no interruption during 60 seconds. The 7- segment-display shows during this time: Image: Control voltage has no interruption during 60 seconds. The 7- segment-display shows during this time: Image: Control voltage has no interruption during 60 seconds. The 7- segment-display shows during this time: Image: Control voltage has no interruption during 60 seconds. The 7- segment-display shows during this time: Image: Control voltage has no interruption during 60 seconds. It is essential that the copy program for firmware and X300 Feedback function code is not interrupted! Image: Control voltage has no interrupted! Image: Control voltage has no interrupted? Image: Control voltage has no interrupted? Image: Control voltage has no interrupted? Image: Contrupt has a state d

2.5 Service-Interface COM1 (RS232)

Functions:

- > Supports all diagnostic and parameter configuration activities
- > PC connection utilizing our communications cable KnPC/D
- Communication utilizing our operational program software (EASYRIDER[®] Windows - Software)

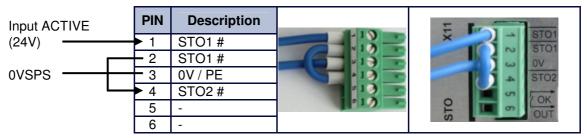
Order code	Length	Description	
KnPC637+/631-03.0	3 m	PC-Side Sub D 09-Plug	
KnPC637+/631-05.0	5 m	Drive-Side 4-Pin RJ 10-Plug	

Note:

The service interface port is not galvanically separated and should therefore not be used as the operations interface port (fixed wiring)!

The network connection with the PC must be located near the Drive in order to receive the reference potentials of the units together.

2.6 Safe Torque Off


2

• Connection Safe Torque Off X11

Plug	g - X11		
PIN	N Description Function		
1	STO1 #	Channel 1 (ACTIVE_STO1)	× 🖬 ω OV
2	STO1 #	Channel 1 (ACTIVE_STO1) Parallel to PIN 1	STO2
3	0V / PE	Reference Potential 0V	
4	STO2 #	Channel 2 (ACTIVE_STO2)	
5	-	Ready potential-free contact assembly	
6	-	Ready potential-free contact assembly	

Further description of this function can be found in Chapter "Safe Torque Off" (STO)

• Connection WITHOUT the utilization of the Safe Torque Off, (STO), function

The control supply voltage must be definitively separated, in accordance to regulation EN 1578 $\,$

2.7 Signal Connection

• Control Signal Plug X10 (SUB D25 Socket)

Inputs / Outputs

Cont	rol Signal Plug X10			0
PIN X10	Function	Туре	Description	X10
1	Shielding Connection		Screen	2513
2	Configurable (Operating Mode)	OPTO	Input	23
3	Stabilized Auxiliary Supply Voltage -12VDC; max. 80 mA		Output Auxiliary Supply Voltage	100
4	Configurable (Operating Mode)	OPTO	Input	1 6 2
5	Reference Point to X10.18		Input Analog 0+/-10V / Ri = 10 kOhm	0/1
6	Configurable	-	Output Analog	162
7	Through JP100 (soldered jumper) assignable as a free and loopable potential for the READY Contacts		Optional	141 OUTROL
8	ON: Drive trouble free OFF: Drive problem or power supply interruption	Relays	Output Constant: Ready	8
9	Reference Point for Digital Input		0V, Reference Point for Digital Inputs	
10	Ground for Analog Signal		Ground	
11	Configurable (Operating Mode)	OPTO	Input	
12	Configurable (Operating Mode)	OPTO	Output	
13	Configurable (Operating Mode)	OPTO	Output	
14	Configurable (Operating Mode)	OPTO	Input	
15	Configurable (Operating Mode)	ΟΡΤΟ	Input	
16	Stabilized Auxiliary Supply Voltage +12V DC; max 80 mA		Output Auxiliary Supply Voltage	
17	Configurable	-	Output Analog	
18	Speed Setpoint; Scaleable differential with respect to X10.5		Input Analog 0+/-10V / Ri = 10 kOhm	
19	Current-Limit; can be activated and is scaleable (0+10V for 0 I _{max)}		Input Analog 0+10V Ri = 10 kOhm	
20	Configurable (Operating Mode)	OPTO	Output	
21	Nominal: 24VDC		Supply for Outputs	
22	Configurable (Safety Functions)	OPTO	Input	
23	-	-	-	
24	Configurable (Operating Mode)	OPTO	Input	
25	Configurable (Operating Mode)	OPTO	Input	

Data for the digital in and outputs: See Chapter. "
General Technical Data"

2.8 Multi-Function X40

Description of the X40:

Via a programmable I/O processor, the X40 connection can be configured differently. EASYRIDER $^{\mbox{\tiny ®}}$ Windows - Software

- Standard functions:
 - Incremental output
 - Incremental input
 - Stepper motor pulse inputs
 - SSI interface

The unobstructed configurability provides ideal conditions for synchronous applications.

General Data	X40
Plug Type:	SUB D 09 male plug
Maximum Input or Output Frequency:	312 kHz
Maximum Cable Length - connected to galvanically insulated terminals (Encoder, controls)	25 m; For extended distances please contact our engineer
Maximum Cable Length - connected to ground related terminals (other drives, controls)	2 m, Pay attention to provide for good common grounding !
Maximum Number of Signal Inputs - to one as incremental output configured device	8
Output Signals:	Driver Model MAX483 or compatible, RS422
Differential Logic Level:	L ≤ 0,5V H ≥ 2,5V
Nominal Range:	0,0 5,0V 60mA max.
Input Signals:	Receiver Model MAX481 or compatible, RS422
Differential Input Level:	Diff min = $0,2V$
Nominal Signal Difference:	1,0V
Current Consumption:	14 mA (depending on the frequency)

Notice:

Master / Slave Operation 1 Master, Maximum 8 Slaves Condition: Devices must be located directly side by side!

Incremental - Output

EASYRIDER[®] Windows - **X40 Connection: Mode = Incremental Output** Incremental encoder simulation for processing in positioning modules Standard: 1024 increments with Pulse Duty Cycle Additional selectable pulse settings: 16384, 8192, 4096, 2048, 512, 256, 128, 64

Inc. I	/O X40		
PIN X40	Function	Designation	X40
1	Channel B	В	
2	Channel B - Inverted	/B	6, •1
3	Shield Connector	Shield	
4	Channel A	A	
5	Channel A - Inverted	/A	9 5
6	Reference *	GND	K.
7	Channel Z - Inverted Zero Impulse	/Z	INCR.
8	Channel Z, zero impulse	Z	
9	Supply Voltage Output Max. 150 mA	+ 5 VDC]

Pulse	resulution	Max. permissible speed
≥1024	Incr./rpm	12000 rpm
2048	Incr./rpm	7600 rpm
4096	Incr./rpm	3800 rpm
8192	Incr./rpm	1900 rpm
16384	Incr./rpm	950 rpm

Design Rule:

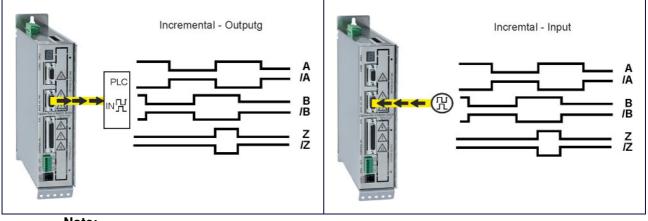
The input frequency range of the connected control must equal at least the value of the pulse output frequency on the X40.

```
n = max. speed (rpm)
```

x = increments e.g. 1024

f = output frequency at X40.1,2,4,5

Formula: $f = \frac{1,2*(n*x)}{60} = [Hz]$

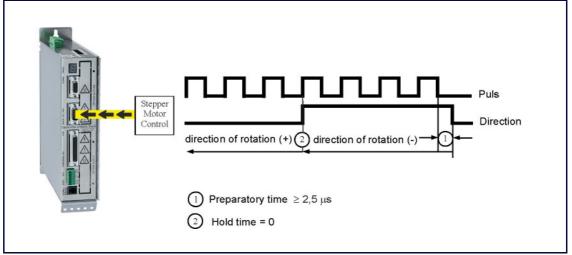

Example: n = 4000 1/min

$$f = \frac{1,2*(4000*1024)}{60} = 81920 \text{ Hz}$$

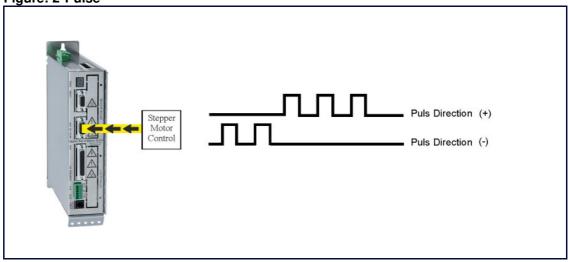
Incremental - Input

Note:

The operation of incremental encoders via long cables may cause a voltage drop of the encoder power supply. We recommend the use of a separate voltage supply if necessary.


• Stepper Motor Input

Two different modes are available

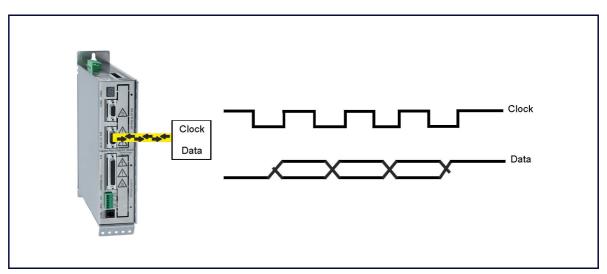

EASYRIDER[®] Windows - Software **X40 Connection: Mode = Stepper Motor (Pulse+Direction)** EASYRIDER[®] Windows - Software **X40 Connection: Mode = Stepper Motor (2*Pulse)**

INCR	R. I/O X40				
PIN X40	Function Mode: Pulse+Direction	Mode: 2*Pulse	Designation	X40	
1	Output: Drive Acti	ive - Inverted	/READY		
2	Output: Drive	e Active	READY		6, 1
3	Shield Con	inector	Shield	0	
4	Pulse Inverted	Pulse - Inverted	-	0	• •
5	Pulse	Pulse -	-	-	9 •5
6	Reference Potential (ge	enerally to connect)	GND	NCR.	
7	Direction Inverted	Pulse + Inverted	-	N	TO J
8	Direction	Pulse +	-		
9	Supply Voltage Outp	out Max. 150 mA	+5 VDC		

Figure: Pulse+Direction

• SSI-Encoder Interface

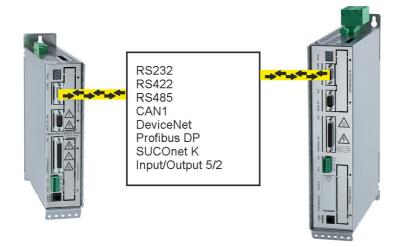
EASYRIDER® Windows - Software


- X40 Connection: Modus = SSI_13 Bit Singleturn Input
- X40 Connection: Modus = SSI_14 Bit Singleturn Input
- X40 Connection: Modus = SSI_25 Bit Multiturn Input / (13 Bit Single- / 12 Bit Multiturn)
- X40 Connection: Modus = SSI_26 Bit Multiturn Input / (14 Bit Single- / 12 Bit Multiturn)
- X40 Connection: Modus = SSI_18 Bit Multiturn Input / (16 Bit Single- / 2 Bit Multiturn)

Incr.	I/O X40		
PIN X40	Function	Designation	
1	Serial Data from SSI Encoder, GRAY Code up to 26 Bit - Inverted	/DATA	X40
2	Serial Data from SSI Encoder, GRAY Code up to 26 Bit	DATA	6 .1
3	Shield Connector	Shield	
4	Clock Output - Inverted Standard Frequenzy: 179 kHz	/TAKT	0/1
5	Clock Output Standard Frequenzy: 179 kHz	TAKT	NCR.
6	Reference Potential	GND	
7	Do Not Connect		
8	Do Not Connect		1
9	Supply Voltage Output Max. 150 mA	+5 VDC	1

TAKT and /TAKT twisted pairs DATA and /DATA twisted pairs Cable Shielded - shielding grounded at both ends, Max. Cable Length: 200m

Note:


For further information about SSI (Synchronous Serial Interface), please refer to the documentation of the appropriate suppliers. (e.g.: Comp. Sick or Hengstler)

2.9 Fieldbus Interface COM2

Additional functions can be realized through the optional employment of the Options Modules

• Pinning for RS232

Mod	ule: RP 232	5
PIN	Function	COM2
1	-	Ŭ (D)
2	RXD	- 95
3	TXD	
4	-	
5	GND / 485-GND	6 4
6	-	
7	-	
8	-	
9	-	

• Pinning for RS422/485

Mod	ule: RP 422 oder RP 485	
PIN	Function	COM2
1	-	Ŭ
2	-	9
3	-	
4	Data In	
5	GND	= 6
6	Data In - Inverted	
7	Data Out - Inverted	
8	Data Out	
9	-	

Options module **RP 422**, <u>without</u> galvanic separation Options module **RP 485**, <u>with</u> galvanic separation Parallel wiring for up to 16 units. (Full - Duplex, 4-Wire)

5

• Pinning for CAN

Mod	ule: RP CAN (CAN BU	IS1)	
PIN	Function	Designation	COM2
1	-	-	6
2	CAN_L Bus Line (dominant low)	CAN_L	Ŭ <u>95</u>
3	Ground	CAN-GND	
4	-	-	
5	-	-	- 6 1
6	Optional Ground	CAN-GND	
7	CAN_H Bus Line (dominant high)	CAN_H	
8	-	-	
9	-	-	

with galvanic separation

• Pinning for Profibus DP

Mod	ule: RP PDN		2
PIN	Function	Designation	COM2
1	-	-	Ŭ
2	-	-	9 5
3	Line B	В	
4	Request to Send	RTS	
5	Ground	PDP-GND	6 4
6	Potential +5V	+5V	
7	-	-	
8	Line A	Α	
9	-	-	

with galvanic separation

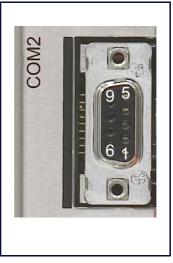
• Pinning for EA5 I/O-Interface (Digital In and Outputs)

Module: RP EA5			
PIN	Function	Designation	Status
1	BIAS Input 101	Standard	Input
2	BIAS Input 102	Standard	Input
3	BIAS Input 107	Standard	Input
4	BIAS Input 108	Standard	Input
5	0VSPS	Ground reference 0VSPS	В
6	BIAS Input 106	Standard	Input
7	BIAS Output 109	Standard	Output
8	BIAS Output 110	Standard	A
9	+24VSPS	Ext. +24V feed-in	UB

with galvanic separation

Notice !

The inputs with the internal numbers 107 and 108 must be connected to pin numbers 3 and 4. The outputs with the internal numbers 109 and 110 must be connected to pin numbers 7 and 8.


2.10 Fieldbus Interface <u>COM2</u> in Combination with <u>COM3</u> (OPTION SLOT A/B)

2

Γ	RP IBS	RP 2CA S CAN-BU		RP PCA CAN-Profibus
	Remote IN	CAN2	CAN2/RS485	CAN2/RS485
F	Remote OL	JT CAN1	CAN1	Profibus DP
and the second se	RP 2C8 CAN-BUS	RP CC8 CAN-BUS	RP PC8 CAN-BUS]
	CAN2	CAN2/RS48	5 CAN2/RS485	
	CAN1	CAN1	Profibus DP	
	I/O (4/4)	I/O (4/4)	I/O (4/4)	

Pinning for Interbus S (RP IBS) Remote OUT - Outgoing Interface (SUB D09 Socket)

Mod	Module: RP IBS					
PIN	Function	Designation				
1	Data Line OUT Forward (error voltage A)	DO2				
2	Data Line IN Backward (error voltage A)	DI2				
3	Reference Potential	IBS-GND				
4	-	-				
5	VCCI	+5V				
6	Data Line OUT Forward (error voltage B)	/DO2				
7	Data Line IN Backward (error voltage B)	/DI2				
8	-	-				
9	Reporting Input *	RBST				

* for additional Interbus S - Interfaces

Remote IN - Incoming Interface (SUB D09 Plug)

Mod	Module: RP IBS					
PIN	Function	Designation				
1	Data Line IN Forward (error voltage A)	DO1				
2	Data Line OUT Backward (error voltage A)	DI1				
3	Reference Potential	IBS-GND				
4	-	-				
5	-	-				
6	Data Line IN Forward (error voltage B)	/DO1				
7	Data Line OUT Backward (error voltage B)	/DI1				
8	-	-				
9	-	-				

with galvanic isolation

2 **Connection Assignments and Functions**

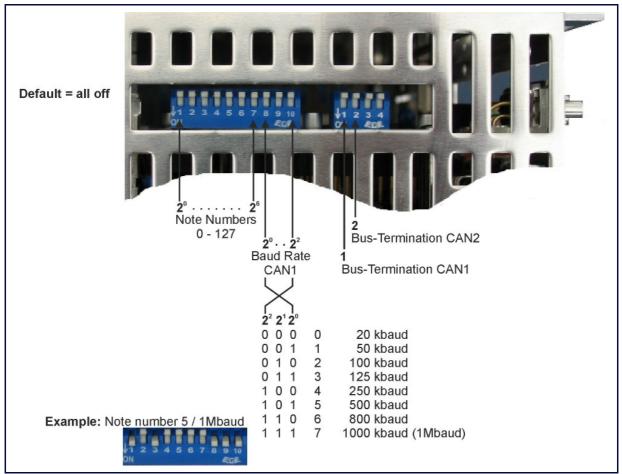
2.11 Fieldbus Interface RP 2CA, 2C8

• Pinning CAN1-BUS and CAN2-BUS

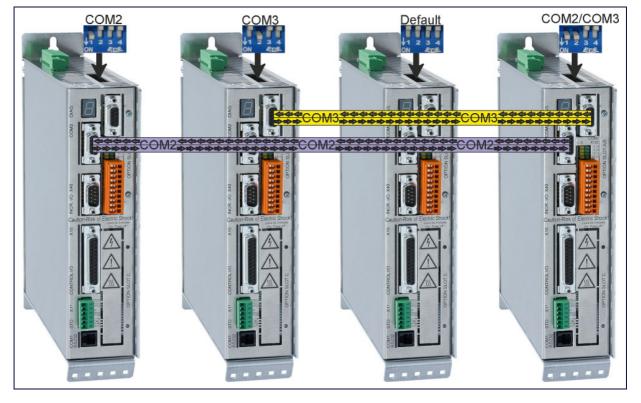
Mod	ule: RP 2CA, 2C8		CAN1	CAN2
PIN	Function	Designation	2	
1	-	-		
2	CAN_L Bus Line (dominant low)	CAN_L	COM2	95
3	Ground	CAN-GND	E	
4	-	-	ESSI	
5	-	-		64
6	Optional Ground	CAN-GND		
7	CAN_H Bus Line (dominant high)	CAN_H		
8	-	-		COM3
9	-	-		COMO

with galvanic isolation

• Pinning RP 2C8 X120 (with I/O's)


X120	Fu	unction	BIAS PIN	Status	COM3
A120	0	1	DIAS FIN	Status	1/0 X120
1	BIAS	Reset Drive Fault	Input 121	Input	1/5 2/6 3/7
2	BIAS	Limit Switch +	Input 122	Input	4/8
3	BIAS	Limit Switch -	Input 123	Input	
4	BIAS	Reference Switch	Input 124	Input	I/O's
5	BIAS	Cam 1	Output 125	Output	5
6	BIAS	Cam 2	Output 126	Output	
7	BIAS	Cam 3	Output 127	Output	
8	BIAS	Cam 4	Output 128	Output	ID 1 9'
9	Ext. +24 V Supply		-	Ub	
10	Ground Re	eference 0 V	-	В	

The signal status of the I/O's is shown with a 2mm LED LED on I/O = high / LED off I/O = low. (min./max. cable cross-section: $0.08 \text{ mm}^2 / 1.5 \text{ mm}^2$)



– DIP Switch Position for Option Module RP 2CA and RP 2C8

DIP – Switch Position CAN

DIP - Switch Position BUS - Termination (Example 638A)

Connection Assignments and Functions 2

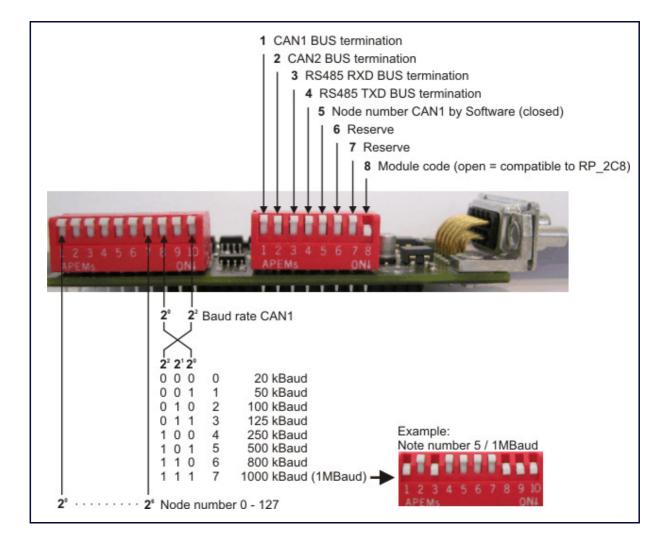
Fieldbus Interface RP CCA, CC8 2.12

Pinning CAN1-BUS, CAN2-BUS and RS485 •

Module: RP CCA, CC8				
PIN	Function	Designation		COM2
1	-	-		ō
2	CAN_L Bus Line (dominant low)	CAN_L		- 9 3 .
3	Ground	CAN-GND	CAN1	
4	-	-		
5	-	-		- 6 4
6	Optional Ground	CAN-GND		
7	CAN_H Bus Line (dominant high)	CAN_H		
8	-	-		
9	-	-		
	CAN2	RS485		
1	-	Data-IN inv.		
2	CAN_L Bus Line (dominant low)	-		
3	Ground	485-/CAN-GND		9 9
4	-	DATA-IN		
5	-	GND (optional)	CAN2-BUS / RS485	
6	Ground	485-/CAN-GND		6 4
7	CAN_H Bus Line (dominant high)	-		
8	-	Data-OUT		
9	-	Data-OUT inv.]	COM3

with galvanic isolation

Pinning RP CC8 X120 (with I/O's)


X120	Ft 0	unction	BIAS PIN	Status		CC
1	BIAS	Reset Drive Fault	Input 121	Input		
2	BIAS	Limit Switch +	Input 122	Input		
3	BIAS	Limit Switch -	Input 123	Input		
4	BIAS	Reference Switch	Input 124	Input	I/O's	
5	BIAS	Cam 1	Output 125	Output		
6	BIAS	Cam 2	Output 126	Output		
7	BIAS	Cam 3	Output 127	Output		
8	BIAS	Cam 4	Output 128	Output		
9	Ext. +24 V Supply		-	Ub		
10	Ground Reference 0 V		-	В		The second s

The signal status of the I/O's is shown with a 2mm LED LED on I/O = high / LED off I/O = low.(min./max. cable cross-section: 0,08mm² / 1,5mm²)

– DIP Switch Position for Option Module RP CCA and RP CC8

DIP - Switch Position CAN

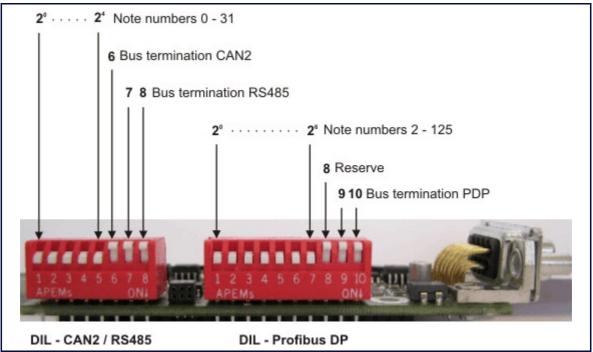
2 **Connection Assignments and Functions**

2.13 Fieldbus Interface RP PCA, PC8

• Pinning Profibus DP and CAN2-BUS and RS485

Mod	ule: RP PCA, PC8			N
PIN	Function	Designation		COM2
1	-	-		Ŭ 🥽
2	-	-		9 5
3	Line B	В	Profibus DP	1 5 2 2
4	Request to Send	RTS		
5	Ground	PDP-GND		6 4
6	Potential +5V	+5V		
7	-	-		
8	Line A	А		
9	-	-		
	CAN2	RS485		
1	-	Data-IN inv.		
2	CAN_L Bus Line (dominant low)	-		
3	Ground	485-/CAN-GND		9 9
4	-	DATA-IN		
5	-	GND (optional)	CAN2-BUS / RS485	2 2 2
6	Ground	485-/CAN-GND		6 1
7	CAN_H Bus Line (dominant high)	-		
8	-	Data-OUT		
9	-	Data-OUT inv.		COM3

• Pinning RP PC8 / X120 (with I/O's)


X120	Function		BIAS PIN	Status	COM3
X120	0	1	DIAS FIN	Status	1/0 X120
1	BIAS	Reset Drive Fault	Input 121	Input	1/5 2/6 3/7
2	BIAS	Limit Switch +	Input 122	Input	4/8
3	BIAS	Limit Switch -	Input 123	Input	
4	BIAS	Reference Switch	Input 124	Input	I/O's
5	BIAS	Cam 1	Output 125	Output	5
6	BIAS	Cam 2	Output 126	Output	
7	BIAS	Cam 3	Output 127	Output	
8	BIAS	Cam 4	Output 128	Output	9
9	Ext. +24 V Supply		-	Ub	
10	Ground Reference 0 V		-	В	

The signal status of the I/O's is shown with a 2mm LED LED on I/O = high / LED off I/O = low. (min./max. cable cross-section: $0.08mm^2 / 1.5mm^2$)

– DIP Switch Position for Option Module RP PCA, PC8

DIP – Switch Position CAN2 / RS485 and Profibus DP

Further information for the Profibus DP: See Documentation 07-05-04-02-E-Vxxxx.

2 **Connection Assignments and Functions**

Cross Section	Cross Section		638B	
		[mm2]	[mm2]	
X60	Solid Core /	0,2-2,5	0,2-10	
Line,	Multiple conductor line	0,2-2,5	0,2-6	
Brakeresistor,	,		0,25-6	
DC-Link	without plastic sleeve	0,25-2,5	0,25-0	
	Flexible with ferrule	0,25-2,5	0,25-4	
	with plastic sleeve	0,20-2,0	0,23-4	
	Flexible with TWIN-			
	ferrule with plastic	0,5-1	0,25-1,5	
	sleeve			
	Approbation Data	[AWG]	[AWG]	
	UL/C-UL-US	30-12	24-8	
	CSA	28-12		
Stud Torque [N		0,5-0,6/5-7	Spring tension	
X01	Solid Core and	0,14-1,5	0,14-1,5	
Control	Multiple conductor line Flexible with ferrule			
Voltage X11	without plastic sleeve	0,25-1,5	0,25-1,5	
STO, Active	Flexible with ferrule			
X62	with plastic sleeve	0,25-0,5	0,25-0,5	
Brake,	Flexible with TWIN-			
Thermo	ferrule with plastic	0,5-1	0,5-1	
	sleeve	-) -		
	Approbation Data	[AWG]	[AWG]	
	UL/C-UL-US	30-14	30-14	
	CSA	30-14		
Stud Torque [N	-	0,2-0,22/2-4	0,2-0,22/2-4	
X61	Solid Core /	0,2-2,5	0,2-10	
Motor	Multiple conductor line	0,2-2,5	0,2-6	
	Flexible with ferrule	0,25-2,5	0,25-6	
	without plastic sleeve		0.05.4	
	Flexible with ferrule	0,25-2,5	0,25-4	
	with plastic sleeve Approbation Data	[AWG]	[AWG]	
	UL/C-UL-US	30-12	28-8	
	CSA	28-12	20-0	
Stud Torque IN	Stud Torque [Nm/Lib.in]		0,7-0,8/7	
X120	Solid Core and	0,5-0,6/5-7		
Option 2C8,	Multiple conductor line	0,08-1,5	0,08-1,5	
PC8, CC8	Approbation Data	[AWG]	[AWG]	
	UL/C-UL-US	28-14	28-14	
	CSA	28-14		

2.14 Overview of the Terminal Cross Section

3.1 Operating Mode General

The preselection of the device functions are carried out by choosing the operating modes 0...5 according to the following table, **see:** <u>• Operating modes and pin functions</u>, (EASYRIDER[®] Windows - Software).

Each operating mode allows for the assignment of different in and output functions (F0..F6).

Operating Mode	Reference Source	Hints for Selecting the Operating Mode			
0 1 2	Analog (X10.5/18)	Switching the operating modes 1 and 2 through input X10.24 Speed control analog Torque controller analog			
3	Analog (X10.5/18) / Digital	8) / Simple applications with the requirement of switching between position and speed control position controller (input X10.24). Handling like operating mode 4			
4	Digital or Analog in acc. to parameter setttings	General position controlled systems - Up to 10 positions can be stored under identifier-numbers and activated as shown.			
pos. selection (Nr. 09) function F2 data 2°2 ⁴					
input start	function F2 X10	.2			
axis move to s	selected position-number				
output position	reached function F0 X1	0.12			
t1= 2ms minin	num t2= 2ms m	inimum $ \qquad \qquad t_1 \rightarrow t_2 \rightarrow $			
5	Digital or Analog in acc. to programming or via digital communication (e.g. fieldbus)	Simple to complex systems using BIAS instructions - (up to 1500 command blocks) PLC Functions			

3 **Operating Mode**

3.2 Operating Modes and Pin Functions

			Opera	ating Modes		
Available Contact Numbers	0 Torque / Speed- Control	1 Speed Control	2 Torque Control	3 Position / Speed Control	4 Position Control	5 Position Control + BIAS Functions
Input X10.14	F0, F1	F0, F1	F0, F1	F0, F1, F2, F3	F0, F1, F2, F3,F6	F0, F1, F2,F6
Input X10.15	F0, F1	F0, F1	F0, F1	F0, F1, F2, F3	F0, F1, F2, F3,F6	F0, F1, F2,F6
Input X10.4					F2,F6	F0, F2, F3,F6
Input X10.25					F2,F6	F0, F2, F3,F6
Input X10.11	F1	F1	F1	F1	F1,F2,F6	F0, F1, F2, F3,F6
Input X10.24	F0 L = torque- H = speed control			F0 L = torque- H = speed control	F1, F2,F6	F1, F2, F3,F6
Input X10.2					F0	F2, F3

Output X10.12	F0, F2, F5	F0, F2, F5	F0, F2, F5	F0, F1,F3, F5	F0, F1,F3, F5	F0, F1, F2, F3, F4, F5
Output X10.13	F0, F2, F5	F0, F2, F5	F0, F2, F5	F0, F1,F3, F5	F0, F1,F3, F5	F0, F1, F2, F3, F4, F5
Output X10.20	F0, F2, F5	F0, F2, F5	F0, F2, F5	F0, F1,F3, F5	F0, F1,F3, F5	F0, F1, F2, F3, F4, F5
Output X62.3 X62.4	F0, F2, F5	F0, F2, F5	F0, F2, F5	F0, F1,F3, F5	F0, F1,F3, F5	F0, F1, F2, F3, F4, F5

3.3	Configurable Pin Functions	(Operating Mode Dependent)
-----	----------------------------	----------------------------

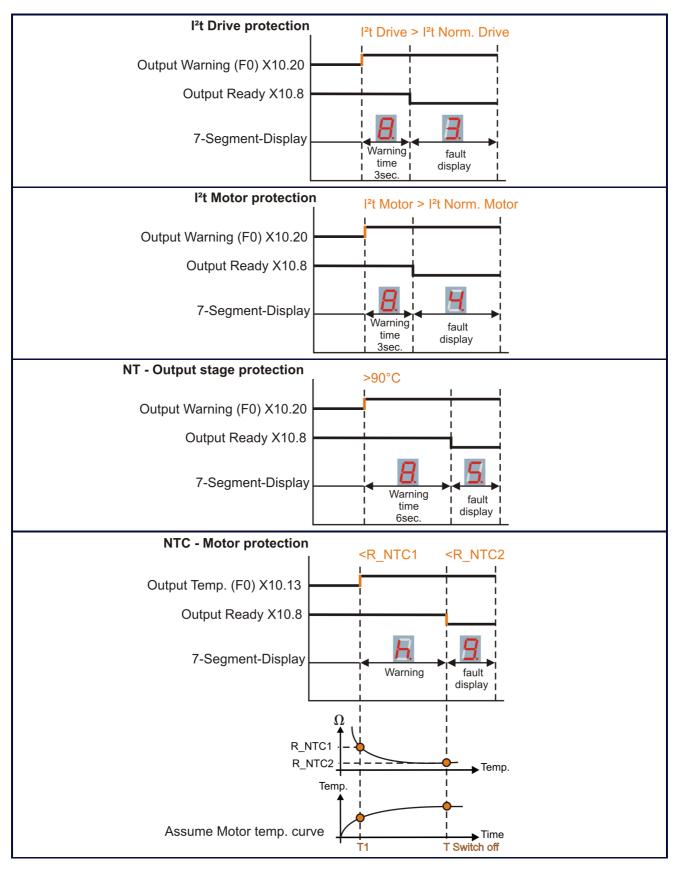
		Input	Functions (Op	perating Mode	Dependent)		
Input Nr.	Function F0	Function F1	Function F2	Function F3	Function F4	Function F5	Function F6 ²⁾
Input X10.14	X	3) limit switch +	1) set selection data 2 ⁰	move manually +	X	\mathbf{X}	CAN Node no. 2 ⁰
Input X10.15	X	3) limit switch -	1) set selection data 2 ^a	move manually -	X	X	CAN Node no. 2 ^a
Input X10.4	latch input 1	extended latch	1) set selection data 2 ^b	X	X	X	CAN Node no. 2 ^b
Input X10.25	latch input 2	\mathbf{X}	1) set selection data 2 ^C	X	X	\mathbf{X}	CAN Node no. 2 ^C
Input X10.11	start (slope 0- >1) for BIAS - move commands	3) regulator trouble reset	1) set selection data 2 ^d	X	X	X	CAN Node no. 2 ^d
Input X10.24	operating mode selection (0) – 1or 2 (3) – 1or 4	3) reference sensor	1) set selection data 2 ^{max}	X	X	X	CAN Node no. 2 ^{max}
Input X10.2	start (slope 0>1) with position set selection in position control (4)	\mathbf{X}	strobe (slope 0>1) for BIAS-set selection	\mathbf{X}	X	\mathbf{X}	X

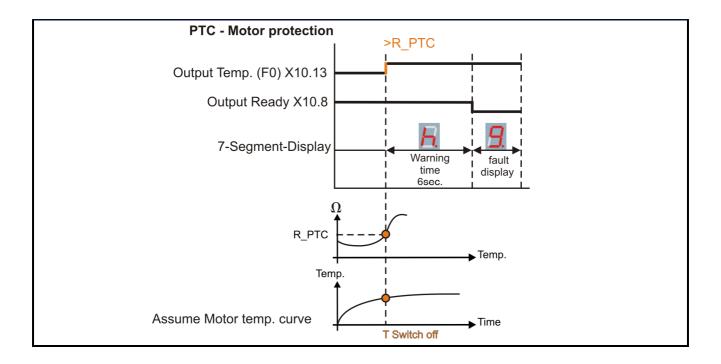
Output X10.12	position reached	reference output	X	tracking window exceded	synchron- format trigger	no drive trouble	-
Output X10.13	temperature monitoring	reference output	X	tracking window exceded	start offset trigger	no regulator trouble	-
Output X10.20	warning	reference output	X	tracking window exceded	X	no drive trouble	-
Output X62.3 X62.4	active ok (motor brake)	reference output	X	tracking window exceded	X	no drive trouble	-

X \square

BIAS function is freely programmable in operating mode 5. - No function in operating modes 0 to 4.

Fast input for optimal timing.


- With every row (from the top to the bottom) in which the function F2 is assigned to an input, the binary value (2ⁿ) increases by 1. (See example)
- Operating mode 4: Only numbers 0 9 are allowed to be set!
- 2) Only possible with module RP-CAN.
- If the Option RP 2C8 / PC8 (See: Fieldbus interface COM2-COM3) is inserted, the contact functions as described for the X10-plug are not valid. The inputs are freely programmable utilizing the BIAS program.


3 **Operating Mode**

3.4 Functions Diagrams with Protection Mode "Switch Off"

In accordance with EASYRIDER® Windows - Software "Commissioning / Motor / Motor/30"

4 Mechanical Installation

4.1 Mounting

In order to guarantee the best possible air circulation for the cooling unit, the servo drive should only be installed <u>in a vertical position</u>. The vertical installation above other systems or heat producing units can cause overheating.

4.2 Cautionary Markings

Caution ! Readability of cautionary markings and instruction labels!

If multiple devices are installed side by side, the cautionary / instruction labels on the side of the housing are not readable anymore. In this case the additional adhesive labels shipped with the device must be placed in the cabinet near to the devices.

Example of adhesive warning label

WARNING Hot Surface - Risk of Burn

4.3 Control Cabinet Mounting

Installation should be carried out only in a control cabinet in which the inside is free from dust, corrosive fumes, gases and liquids.

Make absolutely sure that the condensing of evaporating liquids including atmospheric moisture is avoided. Should the digital servo drive be installed in a place where condensation is likely, a suitable anti-condensation heater must be installed. The heater must be SWITCHED OFF during normal operation.

Automatic switch off is recommended

The servo drives should not be installed in areas which have been classified as dangerous, unless they have been installed in an approved enclosure and in accordance with applicable regulations. In such an application double check all aspects of the installation. Please pay attention during installation of the unit to provide for adequate space and ventilation! (See: **"Dimensions**")

General Rule:

It is better to place heat-producing devices low in an enclosure to support internal convection and to spread out the heat. If placing such devices up high is unavoidable, enlarging the upper dimensions at the expense of height or the installation of fans should be considered.

4.4 Cooling and Ventilation

The digital servo drives are inherently designed to protect against damage which may be caused due to overheating. A temperature sensor is mounted on the heat sink. When the temperature reaches a level above >95 °C, the unit will be automatically shut-down. This setting can not be altered.

The cooling of the power module will be assisted as much as possible with an internal fan. Depending upon the temperature the fan unit will operate at one of two levels, in order to limit unnecessary wear and potential pollution.

Make sure a cabinet of proper size is selected for adequate air circulation.

If the device is placed and operated in a non-ventilated environment, the case volume of the specified control cabinet must be calculated in accordance with the following table!

Unit	Volume / Cabinet
638A01 638A06	0,12 m ³
638B03 638B05	0,15 m³
638B08 638B15	0,25 m³

For more specific information, please refer to the information provided by the manufacturer of the cabinet.

5.1 Installation General

• Safety

The voltages carried by power supply cables, motor cables, connectors, and certain parts of the drive can cause serious electric shock and even death

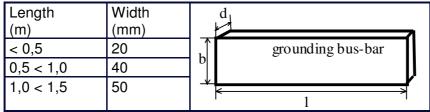
• Danger of Electric Shock

Risk of electrical shock, wait 3 minutes after switching off, for discharging of the capacitors. Disconnect the drive unit from the mains before working on it. A period of **three** minutes **must** pass after switching off so that the internal capacitors can discharge completely. Until the discharge time is over, there can be dangerous voltage stored in the module ! Persons, who monitor or carry out electrical installation and maintenance must be adequately

Persons, who monitor or carry out electrical installation and maintenance must be adequatel qualified and schooled in these activities.

• Dangerous Areas

The use of variable speed drives of all kinds can invalidate the certification for dangerous areas (apparatus group and/or temperature class) of explosion-protected motors. Inspection and certification for the complete installation of servo motors and electronic components **must** be obtained.


Grounding - Safety Grounding

The grounding impedance must meet the requirements of local industrial safety regulations and should be inspected and checked at appropriate and regular intervals

Ground Connections

It is recommended to attach a ground bus, made of high conductivity copper, as near as possible to the servo-rack or regulator modules in order to minimize the length of the cable run connections. The recommended dimensions are:

Thickness: d = 5 to 6 mm

Due to increased discharge currents > DC 10mA resp. > AC 3,5mA the grounding connection of the drive has to be connected 2 times. At power supply connector X60.7 and at the housing grounding screw!

• Short-Circuit Capacity and Discharge Currents

Due to the working principles of servo drives, there may discharge currents to the ground exceeding DC 10mA resp. AC 3,5mA. Suitable for use in a system capable of delivering not more than 5000 RMS symmetrical

amperes 240V (638A) or 480V (638B) maximum. (Note according to UL508C)

5.2 Power Mains Connection

• Types of power mains

The 638 servo drives can be directly connected to TT- and TN-Systems (TT- and TN-Systems are three-phase systems with grounded neutral).

When using the servo drive in IT mains (three-phase systems without grounded neutral), isolation transformers must be used.

The secondary neutral must be grounded and connected to the 638 protective ground conductor.

General is valid, that with a phase-earth voltage (rated isolation voltage) > 300V AC the isolation requirements (necessary clearance- and creapage distance, Test voltage, etc.) Concerning the EC Low Voltage Guideline is not filled anymore and so that the CE conformity is not given.

Mains supply voltage range 638A

The nominal supply voltage range is 1/3*230V AC +/-10%. Respective intermediate transformers must be used for higher supply voltages. With grounded power mains, autotransformers can also be used to adjust the voltage. Neutral does not have to be connected for this type of transformer.

It is possible to use a lower supply voltage range. Note: In this case the internal DC–BUS capacity may be not high enough (specially in 1 phase mains supply) and the user has to adjust the undervoltage monitoring parameter of the drive.

Mains supply voltage range 638B

The nominal supply voltage range is 3*400 / 480 AC +/-10%. It is possible to use a lower supply voltage range. Note: In this case the internal DC–BUS capacity may be not high enough and the user has to adjust the undervoltage monitoring parameter of the drive.

Protective Ground Connection (PE)

The following information concerning the protective ground connection corresponds to EN 61800-5-1 Item 4.2.5.4.1 and 4.2.5.4.2.

Cable cross section

The cross section for the protective ground conductor at X60 corresponds to the external conductor.

The 638 servo drive is a devices with increased leakage current (larger than 3,5 mA AC or 10mA DC). Therefore a second protective ground conductor must be connected at the case-groundbolt. (with the same cross-section as the first protective ground conductor on X60).

• Dimensioning of power mains cable and the over-current protection

The cross-section from the power main cable and the rated current for the over-current protection should be dimensioned for the average current load to be expected.

In the supply line a protection about a protective circuit breaker or fuse shall be provided. Circuit breakers with tripping-characteristic C or fuses with tripping-characteristic gM are to be used.

One determines the load to be expected on the average as follows:

1-phase supply:
$$I_{mains}[A] = \frac{S[VA]}{U_{Netz}[V]}$$
 3-phase supply: $I_{mains}[A] = \frac{S[VA]}{\sqrt{3} \times U_{Netz}[V]}$

The apparent power S can be calculated to that as follows:

$$S[VA] = M_{eff}[Nm] \times k \times \frac{2 \times \pi \times n_{average}[\min - 1]}{60}$$

The constant k for the different servo drives can be taken from the following table:

Туре	638A-1A	638A-2A	638A-4A	638A-6A	
constant k	1,4	1,22	1,22	1,2]
Туре	638B-03	638B-05	638B-08	638B-10	638B-15
	1.29	1.13	1.13		1.08

When information about load torque, Inertia and the friction-situation be there, the effective momentum is calculated with following formula:

(in case of correct motor dimensioning also the rated torque of the employed motor can be used):

$$M_{eff}[Nm] = \sqrt{\frac{1}{T_{cycle}[s]}} \times \sum_{i} M_{i}[Nm] 2 \times t_{i}[s]$$

For the determination of naverage there must be corresponding information about the positioningcvcle.

$$n_{average}[\min-1] = \frac{1}{T_{cycle}[s]} \times \sum_{i} n_{i}[\min-1] \times t_{i}[s]$$

The cross section of the power main cable and the rated current of the used fuse are chosen in accordance with table "Current-carrying capacity of PVC isolated three-phase cable or single conductors" so, that the permissible current-carrying capacity of the chosen cross section larger or alike to the calculated main current. With drive groups this is the sum of the main currents.

$$I_{current-carrying capacity} \ge I_{main}$$
 $I_{current-carrying capacity} \ge \sum I_{main}$

The rated current of the fuse must be equal to or less than the permissible current-carrying capacity of the chosen cross sectional cable.

 $I_R \le I_{current-carrying capacity}$ $I_R \le \sum I_{current-carrying capacity}$

The following table show the maximum current load of PVC insulated three-phase cables (or conducting wires) according to IEC60204-1 at 40 °C environmental temperature and 70 °C maximum conductor temperature.

Line cross section	Individual wires in insulating	Cable in insulating	Cable on walls	Cable in a cable tray
	conduit or cable	conduit or cable		cable liay
	duct	duct		
	B1	B2	С	E
[mm2]	[Aeff]	[Aeff]	[Aeff]	[Aeff]
0,75	7,6			
1,0	10,4	9,6	11,7	11,5
1,5	13,5	12,2	15,2	16,1
2,5	18,3	16,5	21	22
4,0	25	23	28	30
6,0	32	40	36	37
10	44	40	50	52
16	60	53	66	70

When determinating the cross section for he power mains, make sure that the cross section selected is within the range that can be used with power mains terminal X60. See Assignments Power Connections.

Dimensioning the Line Contactor

The rated current of the line conductor is oriented to the over-current for the power mains connection.

The line contactor is set up so that nominal operating current specified by the manufacturer of the line contactor for catergory AC-1 is approximately 1.3 times the rated current of the over current protection.

• Fault Current Protection

Servo Drive of the 638series can cause a DC current in protective grounding. Where for the protection in case of a direct or indirect contact residual current device (RCD) is used, only a RCD of the type B (AC-DC sensitive) is permissible on the current supply side. If is permissible for application should types with increased trip current (300mA) and/or. short time-delayed to be used.

A another preventive measure must be used, e.g. separation from the environment by double or reinforced insulation or separation from the public supply system by a transformer.

Rated Fault Current

Line filters have high discharge currents due to intern capacities. In the servo drive of the series 638 an intern line filter is integrated. Additional discharge currents are caused by the capacities of the Motor cable and the motor winding.

Through the PWM frequency of the Inverter the leakage

current have high frequently rates.

The suitability of the RCD is to test for the respective application.

Generally we do not recommend the operation with RCD's.

The value of the leakage current depends on the following points:

- Lenght and characteristic of the motorcable
- PWM-Frequency
- > Operation with or without shielding
- > How and where is the motor housing grounded

Comment:

High fault currents can occur:

- Extreme unbalance factor of the three phase system.
- > When connecting to the power mains

(short-term single- or two-phase operation because of contact chatter on the line contactor)

Estimation:

Single-phase or two-phase operation (as intermediate state when switching on the line contactor):

Single-phase operation with neutral line:

$$I_{A}[A] = \frac{U_{Netz}[V] \times 2 \times \pi \times f_{Netz}[H_{z}] \times C_{A}[F]}{\sqrt{3}}$$

 $I_{A}[A] = \frac{U_{Netz}[V] \times 2 \times \pi \times f_{Netz}[Hz] \times C_{A}[F]}{2 \times \sqrt{3}}$

The discharge capacitance C_A the various 638 Servo Drives can be taken from the following table:

			Filter	
	638A-0106 1phase	638A-0106 3phase	638A-0106A 1/3phase	LNF RA-230/12 1phasig
Discharge capacitance	230nF	277nF	136nF	10nF
	1	638B0315 3phase	638B0315 x A 3phase	
Discharge capacitance	=	1610nF	200nF	

Recommendation:

For less leakage current operation with 1phase supply it can be recommended the following combination. Use a Servo Drive with the optional Version 638Axx-3-A¹⁾ and a low leakage line-filter Typ LNF RA *230/12.

¹⁾ AC-sided Y-Capacitance deactive (JP600 open, see chapter Jumper)

When several 638A servo drives operates with 1phase supply and 3 phase are available in the machine, the drives should be divided similar on the 3 phases so that the charging currents obliterate utually when the system is powered up.

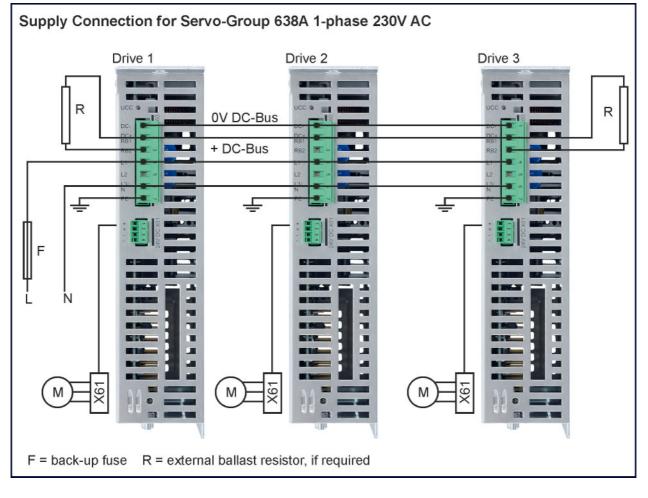
Note:

It only allowed, to connect the DC-Link Voltage between drives which are connected to the same phase or which have 3 phase supply.

5.3 DC Link Parallel Connection

General

With the operation of a group of drives it is possible to couple the DC link circuit of the 638 Drives.

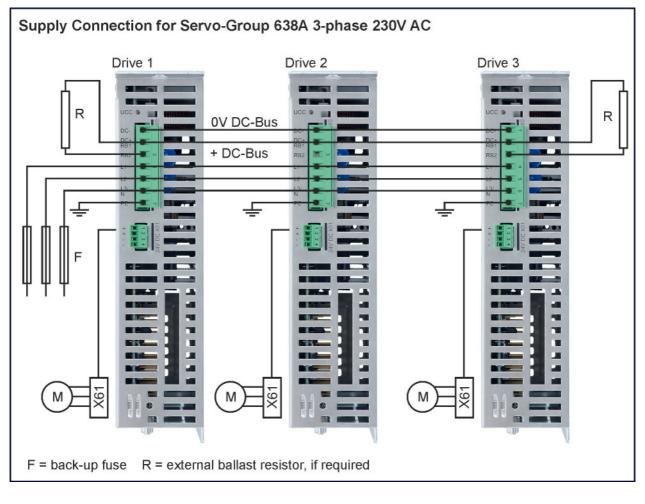

Advantages:

- Positive energy balancing utilization of braking energy, with energy equalization achieved through the DC link
- Smaller load on the ballast resistors
- Increased DC link capacity through smaller residual rippling, specifically with single phase applications
- Increase of the internal ballast peak performance
- Increase of the internal ballast continuous power rating
- Internal unit balancing resistance provides for a uniform rectifier load sharing with a parallel incoming power supply

• Variation 1; Servo Drives without DC LINK protection

Block Diagram 638A (1-phase)

Advantage:

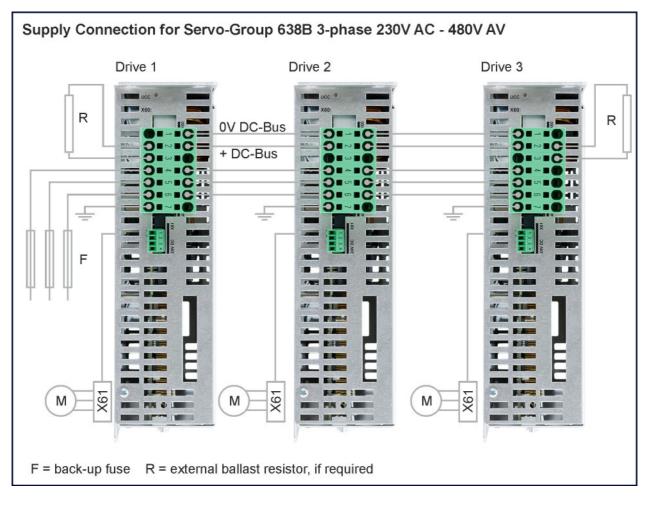

> no DC-fuses necessary.

Disadvantage:

Sum of power limited by line fuse.

Block Diagram 638A (3-phase)

Advantage:


no DC-fuses necessary.

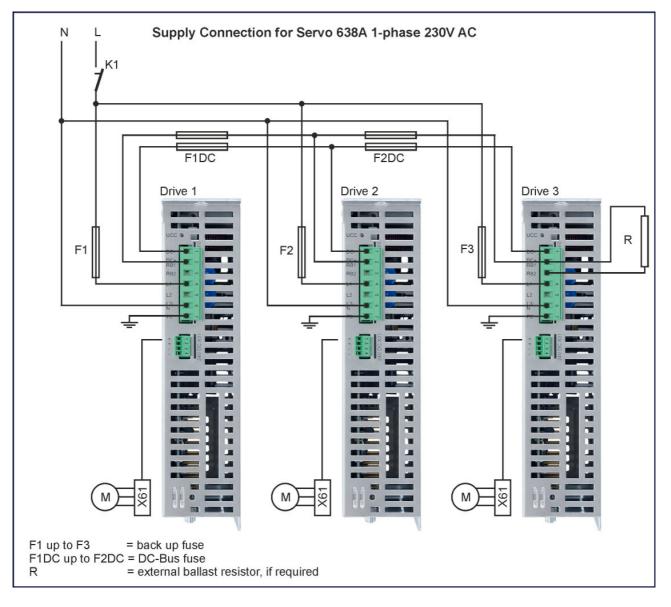
Disadvantage:

Sum of power limited by line fuse.

Block Diagram 638B (3-phase)

Advantage:

no DC-fuses necessary.

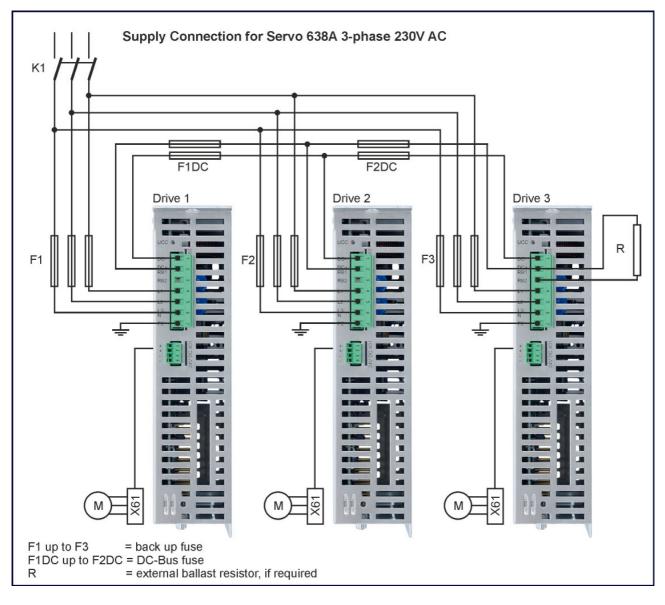

Disadvantage:

Sum of power limited by line fuse.

• Variation 2; Servo Drives with DC LINK protection

Block Diagram 638A (1-phase)

Advantage:

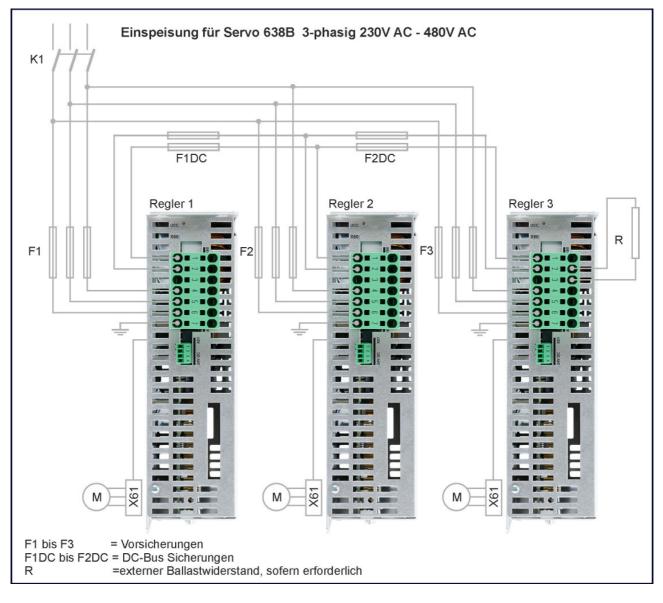

Sum of power not limited by line fuse.

Disadvantage:

DC-fuses necessary.

Block Diagram 638A (3-phase)

Advantage:


Sum of power not limited by line fuse.

Disadvantage:

DC-fuses necessary.

Block Diagram 638B (3-phase)

Advantage:

 \geq Sum of power not limited by line fuse.

Disadvantage:

DC-fuses necessary. \geq

• Function Softstart

When switch on the supply voltage the DC link capacities become over a resistance loaded. Attain the undervoltage threshold + constant waiting period (2,4s) that becomes charging resistor by a relay bridges. The operating status "undervoltage "changes at the same time in "ready". When switching the supply voltage off the soft starting function becomes only after falling below undervoltage threshold again actively. It is therefore particularly with intermediate circuit-coupled Drives importantly before restarting the supply voltage to wait to those under voltage threshold is reached.

Up to standard undervoltage threshold of 160V the unchargeing time for the 6A-Drives is approx. 30 seconds.

Uncharging time to undervoltage threshold (160V) see table:

Тур	638A0106	638B0305	638B0815
time	max. 44sec.	max. 40sec.	max.60sec.

Installation Instructions and Warnings

The DC-Link connections of the Series 638 are not short circuit - and earth fault proof and not protected against polarity reversal. A short circuit on the DC-Bus wires can be damage the rectifier in the Device.

In order to protect the rectifier also in the circuit variant 1, mains fuses of the class gRL must be set in. These are fuses with combined protection for wires and semiconductors.

- ▶ With a common DC link bus, one should employ the 638A Series of Servo Drives exclusively.
- Drives which are located immediately next to each other, within the same control cabinet, should be carefully arranged with the DC links being made employing a short wire connection.

Note: Connect maximum 4 Servo drives together.
Note: Units should be turned on together as shown. (Contactor K1) Switching delays can endanger the function of the rectifier and the "soft-power-up-circuitry", (wear effect).
Note: The failure of individual AC fuses can go unnoticed as the power continues to be delivered through the DC-bus of the units connected in parallel. Regular checks of the fuses are therefore strongly recommended.
Note: Careful planning and wiring are imperative! A short-circuit on DC bus link connections can cause serious damage to the rectifiers and drives.
Note: With single phase power-supply at 638A Devices it is recommended that only the same phase is used for all coupled drives. The connection of different phases generates a DC-Link voltage of 565V DC! This can damage the devices.

• Layout of the Ballast Capacity

Energy, which is produced by the electrical brake motor, will be fed into the DC link and then through the DC link coupling to serve other motors within the sequence. Only a portion of the energy which is produced in this manner leads to an increase in the DC link voltage and will then, at a specified voltage threshold, be converted to heat and released through the units' internal or external ballast. Therefore, an energy exchange occurs between the units, creating a positive energy balancing and overall work load balance of the ballast switches. A significant reduction factor in the load can be anticipated, depending upon the specifics of the installation.

La	yout Step by Step (without reduction factors)	Remarks
AA A	Addition of all internal unit ballast continuous ratings Addition of all internal unit ballast peak performance ratings For information concerning the required data and design layout of the ballast resistance: See Chapter -	The load on the internal ballast will be evenly divided between all of the units connected in parallel.
>	<u>*• Layout of the Ballast Resistance</u> Arrange the external ballast resistance with regard for the braking power occurrence, if possible.	

5.4 Fuses, Contactors

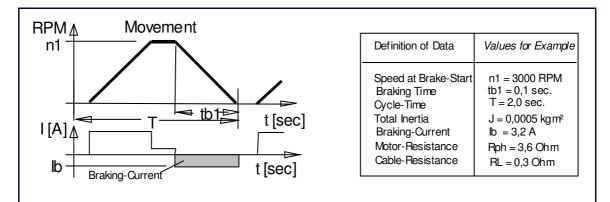
• 638A

Servo - Driver			638A01	638A02	638A04	638A06	
Fuse, Contactor							
FI – Switch			Not recommended				
Maximal Input Supply Current, 1 phase		[A]	2,8	5,5	82)	9,3 1)2)	
Maximal Input Supply Current, 3 phase		[A]	1,7	3,4	5,9	6,7 1)	
Fusible cut-out VDE		Туре	616A gG	616A gG	1016A gG	16A gG	
Automatic circuit breaker		Туре	B6A16A	B6A16A	B10A16A	B16A	
VDE			or	or	or	or	
			C6A16A	C6A16A	C10A16A	C16A	
Fusible cut-out UL	3)	Туре	6A	6A	10A	15A	
Line contactor	4)	Туре	DILM7	DILM7	DILM7	DILM7	
DC-Link connection Fusible cut-out VDE	5)	Туре	10A16A gRL	10A16A gRL	10A16A gRL	10A16A gRL	
DC-link resp. AC-supply							

• 638B

	-						
Servo - Driver			638B03	638B05	638B08	638B10	638B15
Fuse, Contactor							
FI – Switch			Not recomr	nended.			
Nominal Input Supply Current, 3 phase		[A]	3,2	5,6	9,0	10,9 6)	11,4 6)
Fusible cut-out VDE		Туре	616A gG	616A gG	1016A gG	16A gG	16A gG
Automatic circuit breaker		Туре	B6A16A	B6A16A	B10A16A	B16A	B16A
VDE			or	or	or	or	or
			C6A16A	C6A16A	C10A16A	C16A	C16A
Fusible cut-out UL	7)	Туре	10A	15A	25A	30A	30A
Line contactor	4)	Туре	DILM7	DILM7	DILM12	DILM15	DILM15
DC-Link connection Fusible cut-out VDE DC-link resp. AC-supply	5)	Туре	10A30A gRL	10A30A gRL	10A30A gRL	1630A gRL	16A30A gRL

- 1) The continues output power is on the 6A device limited to 70%. see Output Power 638A
- With S1 full load operation > 1,1KW a linechoke with uk >= 4% is recommended. e.g. E12-0018KL.
- Recommended: UL listed (JDDZ) Fusible cut-out Class K5, Class H, Class J, Class CC or rather UL listed (JDRX) Class H.
- 4) Recommended e.g. EATONr
- 5) Class gRL fuses combine protection for cable and semiconductors.
 e.g. Fa. SIBA Sicherungs-Bau GmbH
 Serie 60 034.34.16; Fuseholder 5106304.x (up to 30A)
 Serie 50124.34.xx, Fuseholder 5105804.3 (up to 40A)
 If these fuses are used, the mains voltage may only be switched on, when the Softstart function is active. (Device in Undervoltage operating state).
- 6) With S1 full load operation > 5,5KW a linechoke with uk >= 4% is recommended. e.g.Parker E31-0018KL and for UL-Recommendation Block LR3 40-4/16.
- 7) UL listed (JDDZ) Fusible cut-out Class J or Class CC.
 For DC-Link Applications Class CC Types are recommended.
 If Class CC Types are used, the mains voltage may only be switched on, when the Softstart function is active. (Device in Undervoltage operating state)



5.5 Brake Resistor

Selection of the Brake Resistor

When employing a breaking mechanism with an operating motor driven system, the contained energy flows back into the drive. The capacitors within the motor can absorb a small portion of the excess energy. The rest of the energy must be dissipated through a resistor in heat. The activation of the Brake Resistor occurs, depending upon the voltage threshold. The resistance load is electronically simulated and monitored by our software (EASYRIDER® Windows - Software). Peak power (Pmax) and continuous power output (Pd) must be configured so that the specific requirements of the application are fulfilled.

The general rule for resistance measurements is as follows: Pmax / Pd <= 59.

Selection	
Step 1 Evaluation of the Brake Capacity (Approximation without capacitor load, friction and drive power loss)	Example
Power of Motion:	Pkin = 0,0055 * 0,0005 * 3000²/0,1
Pkin = 0,0055 * J * n1² / tb1 [W]	Pkin = 247 W
Motor Power Loss:	Pvmot = 3,2 ² * (3,6 + 0,3)
Pvmot = lb ² * (Rph + RL) [W]	Pvmot = 40 W
Continuous Power:	Pd = 0,9 * (247 - 40) * 0,1 / 2
Pd = 0,9 * (Pkin-Pvmot) * tb1 / T [W]	Pd = 9,3 W
Peak Power:	Pmax = (1,8 * 247) - 40
Pmax = (1,8 * Pkin) - Pvmot [W]	Pmax = 405 W
Measurements Used:JTotal Inertia [kgm²]n1RPM at Start of Braking [RPM]tb1Braking Time [Sec]TCycle Time [Sec]IbMotor Braking Current [A]RphMotor Resistance (terminal/ terminal) [Ω]RLCable Resistance of the Power Cable [Ω]	

Step 2 Is internal and/or external Brake Resistor re	Example-Drive Type: 638		
Is the internal Brake Resistor sufficient or is no internal resistance available? Should no resistance be available then appropriately sized external Brake Resistor can be employed to meet system requirements according to the table (See below),		Overall Rating: Internal Resistance: Continuous Power Pd = 20W Peak Power Pmax = 0,83kW Requirement: Pd = 9,3W Pmax = 405W	
External and internal resistance can be employ parallel configuration. In this case the internal a capacities can be added together.		Result: The internal configuration is sufficient	
Selection Brake Resistor Only Parker or by our released ballast resistors used !			
Servo Drives	Po	ossible Brake Resistor	
638A01 / 638A02 / 638A04 / 638A06		33R 100W	
638B033 / 638B053	1	00R 100W, 56R 200W	
638B036 / 638B056		100R 100W	
638B037 / 638B057		100R 100W	
638B083	100R 100W,	56R 200W, 36R 300W, 33R 300W	
638B086	100R 100W, 56R 200W		
638B087		100R 100W	
638B106 / 638B156	100R 100W,	56R 200W, 36R 300W, 33R 300W	
638B107 / 638B157	100R 100W,	56R 200W, 36R 300W, 33R 300W	

Configuration of the Brake Resistor

Brake Resistor Circuit Configurations

1. Activate Electronic Resistance:

The electronic resistance will be activated. "Activate Brake Resistor = Y" (Default - setting)

2. Switching Threshold:

The switching threshold is to be selected.

"Ucc Brake Resistor On = 375V" for a 230V AC incoming power supply (Default - setting)

"Ucc Brake Resistor On = 375V" for a 400V AC incoming power supply (Default - setting)

"Ucc Brake Resistor On = 375V" for a 480V AC incoming power supply (Default - setting)

3. Resistance Value:

The total resistance value is determined by the selection of both the internal and external brake resistor values which are combined to provide the overall parallel resistance.

When the brake resistors deviate from the table "**Selection Brake Resistor**", it should be noted that the minimal external resistance value of the controller is not undercut.

(see **<u>Technical Unit Data</u>**).

4. Rated Power:

The brake resistor performance rating is determined by the sum of the selected internal and external brake resistor capacity values.

When the brake resistors deviate from the table "Selection Brake Resistor", it should be noted that the minimal external resistance value of the controller is not undercut. (see **Technical Unit Data**).

Note:

The somewhat similar ratio of Pd – continuous power rating to Pmax – peak power rating is a prerequisite for the correct monitoring of the brake resistor employed in a parallel configuration.

This is guaranteed with the standard design configurations.

Example for 638A:

🕝 Motor/X30 🗐 Drive 🖾	×4 • •
Position control	
Position control internal positio	n 💌
"Pos. reached" window: 400	incr.
"Pos. reached" time: 20	ms
Trail window: 16384	incr.
Trail fault reaction: none	•
-Brake circuit	
🔽 Activate brake circuit	
Brake circuit setpoint: 375	V
Resistance: 27,6	Ohm
Resistance: 27,6 Rated power: 120	Ohm W
Rated power: 120	W
	W

Determination of the resistance values through the employment of both internal and external resistors.

Internal "Brake Resistor = 170 Ohm" External "Brake Resistor = 33 Ohm"

Formula:
$$\frac{1}{\text{Rges.}} = \frac{1}{\text{R int.}} + \frac{1}{\text{Rext.}}$$

 $\frac{1}{\text{Rges.}} = \frac{1}{170\Omega} + \frac{1}{33\Omega} \Longrightarrow \text{Rges.} = 27,6\Omega$

Selected Resistance Value = 27,6 Ohm

Determination of the brake resistor rating through the employment of both the internal and external brake resistor ratings

Internal "Brake Resistor Rating = 20 Watt" External "Brake Resistor Rating = 100 Watt"

> Formula : Pges. = Pint. + Pext. Pges. = $20W + 100W \Rightarrow Pges. = 120W$

Selected Power Rating = 120 Watt

Installation of External Brake Resistors

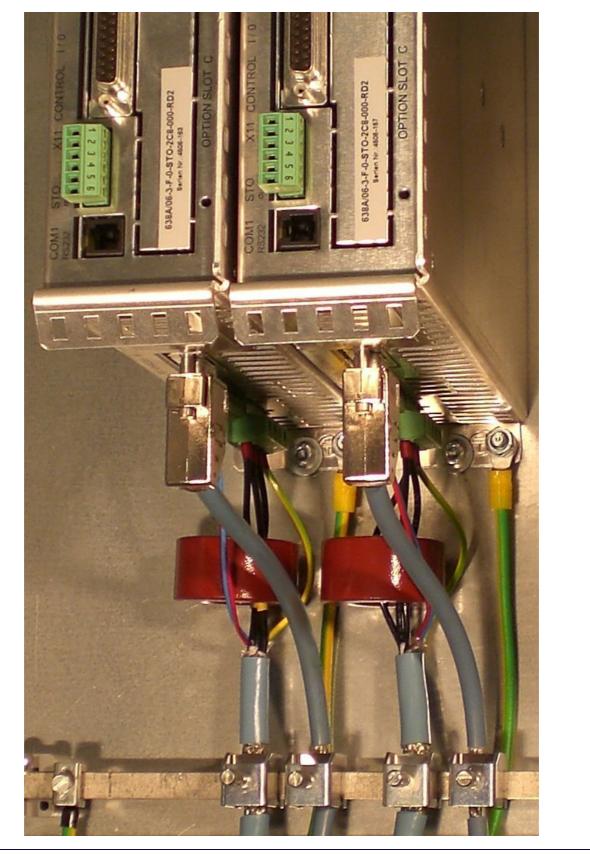
Brake resistors create heat !

The Brake Resistor must therefore be installed in a manner which provides safeguards against the potential danger of inadvertent touching or the danger of fire, during both normal operations and under fault conditions.

6.1 Electromagnetic Compatibility (EMC)

Conformity, in accordance with the EG-EMC Directive 2004/108/EC has been evaluated using a reference system, consisting of a compact type drive and a line-filter on mounting-plate, connected to an AC-synchronous motor. The motor cable is mainly responsible for EMC emissions. The motor cable must be installed therefore employing exceptional care. The layout of grounding is very important. Grounding has to be low-impedance for high frequencies. That means, all ground connecting parts have to be connected over a large surface contact area. The measurements provided are valid only with the use of our cables, suppression aids and line filters and by application

of the following wiring instructions:


Hints for Mounting

	s for mounting	
A	All components are mounted inside of a steel control cubicle on a mounting plate (min. thickness 3mm). Recommended: Galvanized	
В	The connection between the drive housing, the filter housing and the mounting plate must be bare metal and not reduced by varnish. All screws must be properly tightened !	
С	Use only our filters and cables for motor and resolver connections.	
D	Place all wires and cables as close as possible to grounded metal parts.	
E	Separate power and control cables. Minimum distance: 0,3m Cross Points: 90°	$\left[\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
F	Avoid cable loops. The run between the line-filter and drive has to be as close and short as possible (drilled).	
G	Maintain the shielding as close as possible to the cable-end (max distance 8 cm).	8 cm max
Н	Connect shielded connections according to general view of connections: See chapter 2.1. Ground shielding on both sides, with the shortest possible cable run. For long cables: Connect additional shielded areas along the way.	÷ ÷
I	Connect the shielded area to well grounded points.	
К	Connect unused wires in cables to the ground.	
L	Install control cables close to grounded metal parts or shielding when leaving the control cubicle	
Μ	Pay close attention to the grounding of control- transformer (DC 24V). Use a transformer with a metal socket and pay attention to provide for good conductive contact on mounting plate.	
Ν	Pay close attention to the overall grounding of the complete system. Interconnect several mounting plates using copper rails or copper band. Pay attention to the ground connection between the control cabinet and the equipment !	

6 Wiring Instructions

Example for Mounting •

X61 Motor Connector Wiring:

7.1 Jumpers

All jumpers are set to a standard preset !

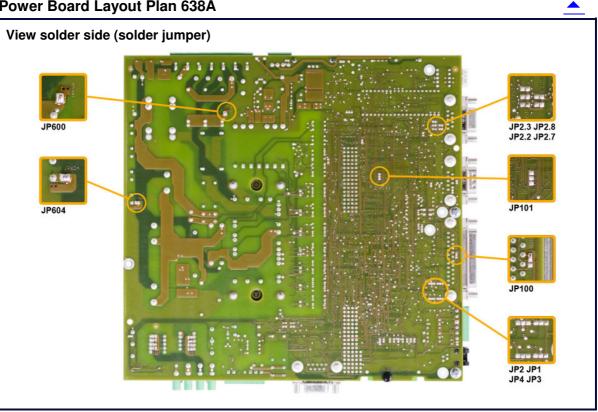
JP100, Bridged Pad		JP 100
2 and 3 (standard)	READY contact with reference to common output supply voltage on X10.21	
1 and 3	READY contact can be freely wired	1 3 2

JP101, Bridged Pad.		JP 101
2 and 3 (standard)	Analog input X10.19 without internal pull-up.	→ -□→ -
1 and 3	Analog input X10.19 with internal pull-up to +12 V	

JP1, JP2, Bridged Pad	Adjust identically !!
2 and 3 (standard)	X10.15 = high active
1 and 3	X10.15 = low active

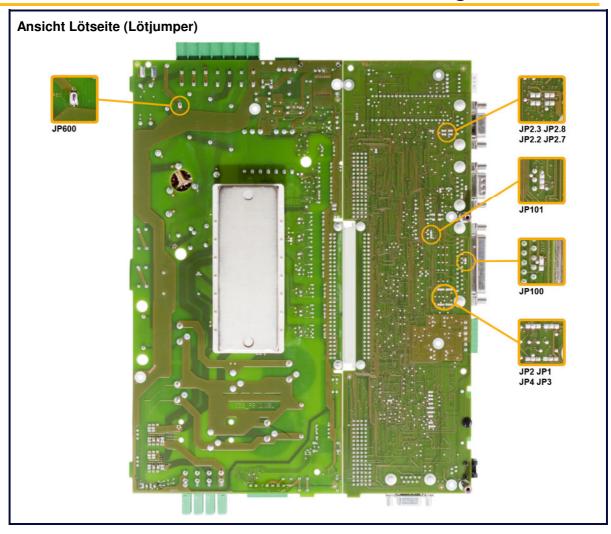
JP3, JP4, Bridged Pad	Adjust identically !
2 and 3 (standard)	X10.14 = high active
1 and 3	X10.14 = low active

JP2.8, JP2.3, JP2.7, JP2.2	
Open	Default, RP -CAN, -DEV, -2CA, -2C8,-CC8,
	-CCA, -PDN, -PC8, -PCA,
Close	RP -232, -422, -485, -IBS, -EA5, -SUC

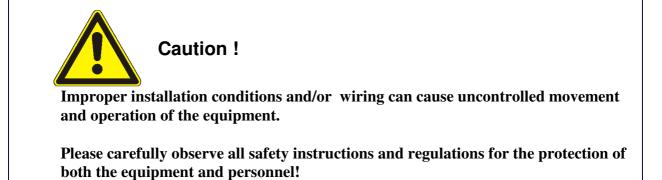

JP600	
Close	Default
Open	Minimal current leakage with external filter operation

JP604	
Close	Default internal brake resistor active
Open	internal brake resistor deactive

Hardware Configuration 7


Power Board Layout Plan 638A

Power Board Layout Plan 638B


Hardware Configuration

9 Safe Torque Off (STO)

8.1 Commissioning Preparation

 It is recommended that one utilize the EASYRIDER[®] Windows - Software Program for the initial setup of the equipment. This program communicates through the serial interface of the computer to the attached drive.
 Information concerning the operation of the EASYRIDER[®] software is discussed in this

chapter. We suggest that the software be first run in the "Simulation" mode in order for the user to become familiar with and comfortable the system.

The EASYRIDER[®] Windows - Software also provides for additional interactive "Help" functions.

- Due to security concerns some of the Menus are password protected. The set up and start up of the equipment must be carried out by qualified personnel only.
- The installation must be performed taking into consideration all of the specific safety regulations and security related functions, concerning the equipment. Double check all safety and security related items, including the limit switch.
- The conformity of the motor feedback system and the X300 feedback module built-in to the drive must be checked by examining the name plates on the equipment.
- For the initial equipment start up involving critical applications, we recommend that a test be run without the mechanical connection being made. If problems do arise then they can be solved without risk of damage to any other attached equipment.
- An experienced installer does have the possibility of tailoring the installation to meet the specific application requirements, provided that he/she assumes all of the responsibility for any alterations or deviations from the prescribed installation instructions.

8.2 <u>Step</u> (1): Wiring and Communications Test

9

10	Action, Function	Anticipated Result	Remark, Cause of Fault Condition	
1.1	Before Starting the Equipment! Check the wiring; in particular: supply voltage, incoming powerline, motor wiring, motor polarity, feedback system, (Resolver; HIPERFACE [®] etc.),polarity Sine / Cosine etc.	-	638 Connector Assignment Electrical Installation Wiring Instructions Model Code	
1.2	First uncouple the motor shaft, before addressing critical mechanical problems.	Limitation of potential danger		
1.3 ↓	Connection of the Diagnostic Interface Link for the Drive - COM1 RS232 Connection to the PC and start EASYRIDER Windows Software.	EASYRIDER for Windows Software Start side:	EASYRIDER Software Cable Interface USB RS232 Adapter	
1.4	Settings for the Connected COM Ports With the PC in Options Menu→ select "Interface Selection".	The selected COM Port is shown on the lower right hand corner of the window of the EASYRIDER for Windows Software	The available connections to the PC are shown in the Device Manager under System Control	
1.5	Supply Voltage US = 24V DC through X01-Connection to the system.	7 Segment Display:	Pin Assignments for the Power Supply Connection X01 7 Segment Display Symbol:	
1.6	Check the communications connections and functions by utilizing the Diagnosis window or by employing the F9 button on the keyboard.	EASYRIDER Diagnosis Window:	It is always the last window where settings have been made which will be opened!	

-Parker

10	Action, Function	Anticipated Result	Remark, Cause of Fault Condition
	On to <u>Step</u> ② <u>-</u>		<u> </u>

8.3 <u>Step</u> (2). :Feedback Test and Motor Selection

20	Action, Function		Anticipated Result	Remark, Cause of Fault Condition
2.1.1	Prerequisite: <u>Step</u> ① The feedback sensor is connected to the 638 Drive through the X30 connection port.	MFEEDBACK X30		638 X30 Connector Assignment
	Optionally. Temperature sensor and/or Brakre are connected to the X62 connector. (with X62 Thermo notice <u>Step</u> <u>2.2.3</u>			<u>638 X62</u> Connector Assignment
2.1.2	Make the X30 connection drive only when the power sup disconnected!		Eliminate the risk of a short circuit!	
2.1.3	Check the counter function by loc Actual Position Locator – Display Drive Diagnosis window of the E/ Software and the movement of th motor shaft. ひひ with linear mo movement of the rotor.	1 under the ASYRIDER ne	Diagnosis: 638 06 A - 4711 Drive In-/ outputs BIAS Mathematics act.position 1: 0 INKR Motor actual speed: 0 rpm effective current: 0 A Rotor position: 0 * Status Drive Off COM 1 Hoc OK Motor feedback OK	When employing a motor with a brake, make certain that the brake is opened

• <u>Step</u> 2.2 Motor Selection

20	Action, Function	Anticipated Result	Remark, Cause of Fault Condition
2.2.1	Prerequisite: <u>Step</u> (1) The motor cable is connected to the 638 Drive through the X61 connection port	-	638 X61 Connector Assignment
2.2.2	In the EASYRIDER configuration menu for "Motor", select Motor Library and then scroll down to the appropriate motor utilizing the motor	Motorlibrary ? X Eile Edit ACM2n 325 V ACM2n 0212-6/Y·3 OK ACM2n0012-6/Y·3 Cancel	When employing motors from other manufacturers

20	Action, Function	Anticipated Result	Remark, Cause of Fault Condition
	type information as listed on the name plate.		it is possible to input and store the specific motor characteristics in the Customer Motor Library.
2.2.3	Optionally: select temperature sensor Motor/X30 Drive EX X4 + + Temp. supervision: X 30 - Sensor type: X 30 Switch off at: 0 0hm T1 active at: 0 0hm	Select the temperature sensor connection X30 or X62 in EASYRIDER. Default : X30	638 X30 Connector Assignment or 638 X62 Connector Assignment
2.2.4	In the EASYRIDER configuration menu for "Motor", send the selected motor information on to the drive and save the selection.	-	<u> </u>

9

• <u>Step</u> 2.3 Motor with Resolver Feedback

20	Action, Function	Anticipated Result	Remark, Cause of Fault Condition
2.3	With standard motors, equipped with Resolver Feedback, when the unit is properly wired and the proper motor is selected, no additional action is required. For every360° motor shaft turn a position value of $2^{16} =$ 65536 pulses is sensed.		
	On to <u>Step</u> ③ 🔽		_

• <u>Step 2.4 Motor with HIPERFACE Feedback</u>

20	Action, Function	Anticipated Result	Remark, Cause of Fault Condition
2.4	 The characteristics of the HIPERFACE – Feedback System, as the absolute measuring device (multi-turn provider), allows for 2 additional parameter settings. 1. Selection of the position location, per rotation 16 or 20 bit. 2. Selection of the absolute position value according to the connection between the motor and the mechanical component. Note: It is necessary to initially provide the angular commutation parameter value as the absolute value for the HIPERFACE provider, when employing a motor from another manufacturer with HIPERFACE- Feedback 		
	On to <u>Step</u> ③ <u>-</u>		_

• <u>Step</u> 2.5 Motor with SIN-COS Feedback Linear Motor

20	Action, Function	Anticipated Result	Remark, Cause of Fault Condition
2.5	Additional settings are required with the employment of this variation, which are described in the following section: <u>Linear-Setup</u> .		
	On to <u>Step</u> ③ 🔽		<u> </u>

8.4 <u>Step</u> ③: Power Up and Drive Activation

• <u>Step</u> 3.1 Power Up

30	Action, Function	Anticipated Result	Remark, Cause of Fault Condition
3.1.1 I	Prerequisite: <u>Step</u> (1 + (2)) The power supply is connected to the X60 connection of the 638 Drive.	-	X60 Connector Assignment
3.1.2	Establish the X60 connection, when lacking, only when the drive system is not connected to the power supply!	In order to eliminate the risk of a short circuit!	
3.1.3	Terminals 1 and 4 on the X11 STO connection should be set at 0 V.	The drive remains in a non- activated condition even after the power is connected.	X11 Connector Assignment STO = Safe Torque Off
3.1.4	Turn on the power and check the voltage in the Drive Diagnostic Menu. Diagnosis: 638 06 A - 4711 Drive In-/ outputs In-/ outputs BIAS Mathematics Internal Motor Drive actual speed: 0 offective current: 0	The drive will show a DC link voltage Ucc of approx. 325 V DC with an incoming supply of 230 V AC, in a non-activated condition.	7 Segment Display:

Step 3.2 Drive Activation

•

30	Action, Function	Anticipated Result	Remark, Cause of Fault Condition
3.2.1	It is necessary to make additional settings as described in <u>Step 4.2</u> <u>Optimization Linear Motor</u> , when employing a motor with a Sin/Cos Feedback system.	In the event that the Feedback System = Sin/Cos On to <u>Step 4.2</u>	
3.2.2	Terminals 1 and 4 on the X11 STO connection should be set at 24 V.	Driver – power stage is activated and the 7 segment display shows: The drive is now set in the operations mode.(Delivery condition; Speed control set to the analog setpoint)	X11 Connector Assignment The motor shaft can be set to turn slower through the 0-V offset setting of the analog setpoint input.
	In the event that no fault condition arises On to Step $\textcircled{4}$		
	Further function test from the STO – term Safe Torque Off .	ninal, as per statement in chapter	
Other- wise 3.2.3	With unanticipated operation or overheating of the motor, turn off the drive and attempt to locate the cause of the problem. Identify and rectify the fault condition.	8.8.8.8.	Diagnosis and Troubleshooting
	and perform <u>Step</u> ③ again 📥	$\overline{\mathbf{S}}$	

8.5 <u>Step</u> **(4)**: Control Loop Optimization

• <u>Step</u> 4.1 Control Loop Optimization with Rotary Motors

40	Action, Function	Anticipated Result	Remark, Cause of Fault Condition
4.1.1	Prerequisite: <u>Step</u> ①+②+③	\$ © V	
4.1.2	In the EASYRIDER Commissioning Menus select	Check the speed and power variation characteristics utilizing an oscilloscope and through the adjustment of the P and I sections set the parameters for the control rigidity.	
4.1.3	Attach the mechanical component with the motor shaft.		
4.1.4	Perform step 4.1.2 again	Pay attention with linear motion! The speed generator is controlled by time and recognizes no parameters unless the limit switch is configured!	
4.1.5	Within the EASYRIDER Commissioning Menu select "Position Control", when employing the position control settings.	Check the speed, power variation and control deviation characteristics utilizing an oscilloscope and through the adjustment of the P, I and V sections set the parameters for the power control rigidity.	
	On to <u>Step</u> (5) <mark>▼</mark>	\$ © V	

8.6 <u>Step</u> (5): Operation Mode Selection

9

5	Action, Function	Anticipated Result	Remark, Cause of Fault Condition
5.1	Prerequisite: <u>Step</u> ①+②+③+④		
5.2	In the EASYRIDER configuration menu, select "General" and then select the appropriate operating mode. Configuration 638 06 A - 4711 CONFIGURATION 638 06 A - 4711 CONFIGURATION A Dutputs 60 Motor/X30 Drive E2 X4 + Drive name: 638 06 A - 4711 Operation mode C 0 Speed / Current control via X10.24 C 1 Speed control C 2 Current control via X10.24 C 4 Position control with BIAS-execution C 5 Position control with BIAS-execution DK Abbrechen	With the selection of the operating mode, one must also select additional settings. For example: * On/Off Configuration * Analog Setpoint Selection and Integrator * Position Blocks * BIAS Program * Fieldbus Interface	Additional information and assistance is available through the utilization of the online help for EASYRIDER Software.
	On to <u>Step</u>		

8.7 <u>Step</u> (6): Fieldbus Interface

6	Action, Function	Anticipated Result	Remark, Cause of Fault Condition
6.1	Prerequisite: <u>Step</u> ①+②+③		
6.2	The overall system commissioning and the communications test of the fieldbus interface are dependent upon the interface configuration of the drive. If there is not an options board connected then there are no more additional settings required, and one can move on to Step 7.		
6.3.	In the configurations menu, under "Fieldbus" additional settings may be required, depending upon the connection interface for the fieldbus board.	Additional information concerning start up procedure for the fieldbus interface connection can be found in the handbook about the Options Board.	
	On to <u>Step</u> ⑦₊		

8.8 <u>Step</u> (7): Data Save

70	Action, Function	Anticipated Result	Remark, Cause of Fault Condition
7.1	Prerequisite: <u>Step</u> 1+2+3+4+5+6		
7.2	Read the parameters shown in the EASYRIDER Data Menu under "Drive Parameters". Ele commissioning Tuning Command Diagnosis Options Window ? ElASYRIDER - parameters1 Ele commissioning Tuning Command Diagnosis Options Window ? ElASYRIDER - parameters1 Ele commissioning Tuning Command Diagnosis Options Window ? ElASYRIDER - parameters1 Dependence Parameter File Ctrieo Close Read Parameter Save As Drive Parameter File Ctrieo Read Parameters1 Drive type: 638 7 06, Va8.33, build at Tuesday Drive name: 638 06 Å - 4711; Serial nun Print Preview Print Preview Print Preview Print Preview Exit Digital inputs: Digital inputs: Digital inputs: Digital inputs: Digital inputs: Digital inputs: Digital outputs: Output 12: Output 25: Latch input 15 Input 24: Reference sensor Input 25: Latch input 15 Output 35: Jatch input: Scaling: 400 rpm×V Tategrator: 0.000 V current control Scaling: 400 rpm×V Tategrator: 0.000 V current control Scaling: 400 rpm×V Tategrator: 0.000 V current control Scaling: 1.00 A/V Analog Outputs: Motor name: ACM2n0150-4/1-3 Rated current: 3.30 Aeff V		
7.2	In the Menu, under commands select "Save Data on the Drive"		

81

70	Action, Function	Anticipated Result	Remark, Cause of Fault Condition
7.3	In the Menu under Data, select "Save As", to save the drive parameters on the computer, utilizing the file suffix *.wdd . EASYRDER - parameters1 File commissioning Tuning Command Diagnosis Options Window 2 BLAS Program Drive Parameter Gose Save As Drive Parameters1 Drive start input 1 Filename: parameters1 Drive start input 1 Input 02: Start input 1 Input 01: Start input 1 Input 11: Start input 1 Input 14: BLAS-input 14 Save As Sepichem Daten Parameters1.wdd Speichem 4000 rpma = 10 Aeff Datelyp: Parameters1.wdd Speichem 4000 rpma = 10 Aeff Bated current: 3.30 Aeff		
	First system start up procedure $\frac{\text{Steps}}{9} (1 + (2) + (3) + (4) + (5) + (6) + (7)$ successfully accomplished.		

9.1 General Introduction

The following documentation is meant to provide the basic information concerning our drive controller and an understanding about the advanced, safety oriented machine construction. References to standards or other regulations are made in a general overview manner. The specific standards or regulations for your installation will vary depending upon the equipment employed and the specifics of your application.

For more information we suggest referring to specific technical literature, for example: BIA-Report 6/97, BIA-Report 5/2003 und BGIA-Report 2/2008 (Information of the German Professional Trade Association).

These reports can be downloaded from: http://www.hvbg.de/d/bia/pub/rep/index.html

Term	Explanation
Safety Category 3	Definition according to the regulation:
Performance Level e	Circuit with built-in protective functions for individual fault conditions.
according to EN ISO 13849	Some, but not all faults will be recognized.
	The frequent occurrence of fault conditions can lead to a loss of the safety functions.
	The remainder of the risk must be understood and accepted. The determination for the application of the appropriate safety category
	requirements, (risk analysis), lies with the installer and operator of the equipment.
	You can reference the method described in EN13849-1:1996, Appendix B, as an
	example.
,Safe Stop'	With the activation of "Safe Torque Off", the energy supply to the drive is definitively
	interrupted, according to the requirements of EN1037, section 4.1. The drive unit is not allowed to rotate and will therefore not be able to generate any dangerous
or alternatively:	rotational movements, (See EN 1037, section 5.3.1.3).
	The stopping position must not be monitored.
,Safe Torque Off'	Should there be the potential of an outside energy source affecting the drive and
	STO
or abbreviated as:	function, for example the dropping of a hanging load, then additional action needs to
	be taken to guarantee that no additional movement takes place, (i.e. installation of a mechanical brake).
STO	illechallical blake).
	The following measures are appropriate for incorporation with "Safe Torque Off":
	- Protection between power connection and the drive system
	(Line Fault Protection)
	- Protection between the power unit and the motor (Motor Protection)
	 Protected lock of the control of the solid state power component (Start up col(out))
Start-Up Lockout	(Start-up Lockout) Protected lock of the control of the solid state power component.
	With help of this function one can establish the activation of the "Safe Torque Off".

Important Technical Terms and Explanations

• Stop Category according to EN 60204-1 (Chapter. 9.2.2)

Stop Category	Requirement	System Reaction	Note
0	Shutdown by immediate shut-off of power supply to the machines' driving components	Uncontrolled Shutdown	Uncontrolled shutdown is the stopping of the machines' movement by eliminating the power supply to the power components of the machine. Available brakes and/or other mechanical braking systems should be employed.
1	Shutdown, by a means which maintains the power supply connection to the machine drive component, to bring movement to a standstill. The power connection will be broken only after standstill has been achieved.	Controlled Shutdown	Controlled shutdown is the stopping of the machines' movement by for example, the setback of the electronic command signals to zero as soon as the stop signal is recognized by the controller, while the power supply to the machine drive components remains intact until a standstill condition is achieved.
2	Shutdown, by a means which maintains the power supply connection to the machine drive component.	Controlled Shutdown	This category will not be covered in the functions description of the manual.

Applications in Accordance with the Regulations

The 638 Drive supports the safety function "Safe Torque Off", in the sense of providing a definitive stopping of the equipment, with protection against unanticipated start-up, in accordance with regulations EN ISO 13849-1, Category 3, up to Performance Level e and EN 1037.

The motor must stopped controlled through the machine controller. However, it does not provide for any verification of cessation of movement which may have been produced from some external source. One must pay specific attention to the vertical axes, without a mechanical self-inhibitor or balanced weight.

According to Machine Regulations 2006/42/EG, using. e.g. EN ISO 134849-1, when considering the safety and risk analysis, the machine constructor is responsible to make certain that the overall safety system for the whole machine takes all of the integrated components into consideration. Note that the electrical drives must also be included in this consideration.

One must pay attention to and follow the instructions completely as stated in the validation report, with regard to the initial start-up, service intervals, troubleshooting and repair of the equipment. The STO conformance protocol outlines a suggestion for the documentation of the relevant safety parameters in the validation report.

• Trained Personnel

Planning, installation and initial system commissioning require a detailed understanding of this information.

Protective safety standards and risk mitigation issues which are connected to the specifics of the installation must be recognized and taken into consideration, as well as appropriate actions to be taken in the event of an emergency.

Performance	Application of the Safe	Conventional Solution : Utilization of	
Feature Torque Off Function		External Switching Components	
Requirement			
Reduced	Simple circuitry, certified application	Two safety-oriented performance protections in	
Switching Effort	examples The grouping of multiple drives together	series connections required.	
	on a main contactor is possible.		
Application in	Extremely high switching frequency	This performance feature is not achievable through	
Production Processes	through the use of almost wear-free technology (Low voltage relays and an	the employment of conventional technology.	
High Switching	electronic switch). The condition "Safe Torque Off" is achieved through		
Frequency,	the use of a wear-free electronic		
High Reliability,	switches (IGBT'S).		
Less Wear			
Application in	The drive remains power and control	With the utilization of power contactors on the	
Production Processes	related in a connected condition. No significant wait time with re-start.	incoming power line, a long wait time is required for the energy discharge from the DC link.	
Faster Reaction Time,		With the use of two motor side power contactors, it	
Faster Re-Start		is possible to increase the reaction time, however	
		one must recognize the potential disadvantages::	
		a) Make certain that switching occurs only in a	
		power free condition, (DC Power! Prevent arcing). b) Increased cost for EMC conforming cabling.	
Emergency Stop		Shutdown employing a mechanical switching	
Function		element is required.	

Benefits with the Employment of the Safe Torque Off Function

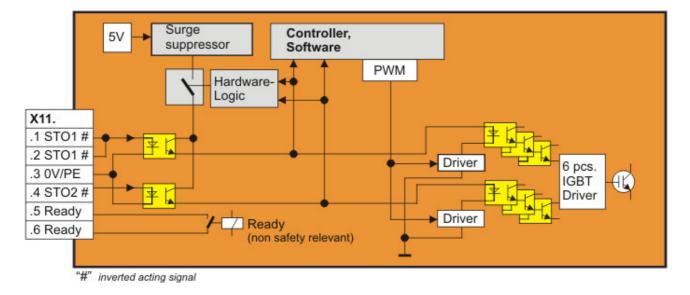
• Safety Instructions and Limitations

No Galvanic Separation of the Outputs The galavanic separation does not occur through the starting lockout function. This therefore does not in any way provide protection against an "electrical spike". For operation interruptions, maintenance, service and cleaning of the equipment, the entire system must be definitively and galvanically separated from the power supply at the main switch box and confirmation should be made that the system can not restart (See EN 60204-1;5.3).
Potential Sudden Jerking or Movement under Fault Condition In the event that two fault conditions appear at the same time in the power unit, it is possible that unit may exhibit a sudden jerking or movement within a small angle of rotation. This is dependent upon the number of pole pairs of the motor. (Rotary Type:2-pole = 180°, 4-pole = 90°, 6-pole = 60°, 8-pole = 45°; Linear Motors: 180° electric).
Malfunction during the Active Braking Phase with Stop Category 1; EN 60204-1 (controlled stop with reliable monitored time delay) If a fault in the drive system occurs during the active braking phase, the axel can coast to a stop, uncontrolled or in the worst case continue to operate until the expiration of the predetermined shut-off time.
Hanging Loads or Influencing External Forces In the event of a power failure the hanging loads can possibly fall in an uncontrolled manner endangering people or equipment. The operation of hanging axes therefore requires special attention relating to risk analysis and mitigation with hanging loads.
Not for Use in Drive Applications in Field Weakening Operation Ranges! With motors which are employed in field weakening operation ranges, it is important to note that the operation of the STO function can be adversely affected, specifically involving an uncontrolled increase in rotational speed, life threatening over voltage and explosion of the drive unit!
Minimal request of safety function The safety function STO must activate for at least weekly.
Acknowledgement The configurable acknowledgement is only permissible with category B.

9.2 Safe Torque Off Function, (STO)

General

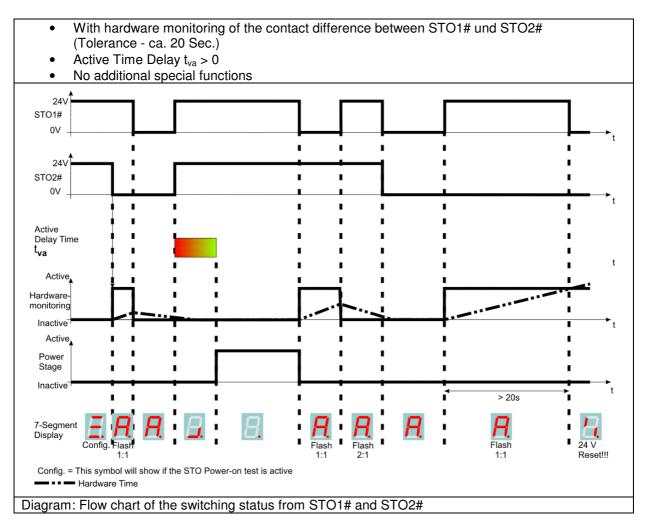
The electricity flow to the motor windings is controlled through a solid state power component bridge (6-times IGBT). A microprocessor switch with PWM logic switches the IGTB's rotating field orientation. Optical couplings are employed between the control logic and the power unit to provide for electrical isolation.


The <u>X11 Connector Plug (STO)</u> is located on the front of the drive unit. This connector plug is controlled utilizing two optical couplings which communicate over **two channels** through terminals **STO1#** and **STO2#**, and which in a controlled condition supplies the PWM optical coupler with control of the solid state power component.

A test takes place to determine the condition of the input channels. Within the given window of time the condition of both channels must be identical. In the event that a fault condition exists, (different signals from STO1# and STO2#), then the coupling power supply is shut-off and a signal is sent to the 7 segment display.

The re-activation of the power supply to the coupling is then only possible by performing a hardware reset, by turning the equipment off and then back on again.

In addition to the description of the hardware based shut-off through the two channel communication, the internal unit processor provides for a software based shutdown of the PWM circuit.


The PWM circuit can be set for time delayed activation, after the recognition of the activation of both STO inputs, through the programming of the safety parameters for the **active time delay**.

• Block Circuit Diagram

• Status Diagram and Function of Terminals STO1# und STO2#

Note for Standard Operation:

- The STO inputs should always be operated simultaneously.
 - If the safety parameter **Active Time Delay** is $t_{va} = 0$ s, then both STO inputs will be turned on immediately after recognition.

9.3 Configuration and Parameter Settings

General Instructions for Parameter Settings

The safe torque off, 'STO', basic function is a built-in, hardware oriented safety function which is **not** configurable.

Depending upon the specific application however, it is possible to alter specific settings on the drive side which can increase the operational safety factor.

The configuration and programming of the safety parameters can be accomplished utilizing the Diagnosis and Parameter Setting screen in EASYRIDER for Windows.

This configuration process has been designed to assist the user in making the proper parameter settings, in an attempt to eliminate the potential for systematic programming errors and/or improper parameter settings.

•	Special password protected access is required to reach the relevant safety parameter setting screens. The transmission of the data through the PC interface follows a specially designed protected procedure, including: CRC check, drive specific
•	password and a double confirmation and acknowledgement process for the parameter values entered. After the confirmation and acknowledgement of the entered data, the parameter values are saved in the drive and protected even in the event of a power loss.
•	automatic periodic verification of the memory cell accordance. Any other means of accessing the safety and security related data, as described here, is not permitted.
·	The creation of a parameter protocol, which can be stored as a document with appropriate name and date information.

 The relevant safety, secondary function parameters – Acknowledgement and Active Time Delay, can only be set within the Configuration Safety dialog box. The data are saved under Parameter Data utilizing the suffix *.WDD. But the safety relevant data will not transmit by "Transmit Parameters".

 Safety parameter
 NOTE!

 The safety parameter is possible via the safety reasons)
 Editing this parameter is possible via the safety dialog, only.

 CONTINUE?
 Yes
 No

 In the Configuration Safety dialog box the relevant safety parameters safely to the drive.
 In the configuration Safety dialog box the relevant safety parameter safely to the drive.

1. Commissioning menu - select "Safety" : 2. Access password - enter "BGSM" 📲 EASYRIDER ? File Commissioning Tuning Command Safety BA General 8 Please insert your EA In- / Outputs password. 🚮 Motor xxxx Drive <u>6X X</u>40 O Supervision ΟK Cancel // S<u>a</u>fety 🛱 Positionblocks and verify with "OK" 🔚: Fieldbus Special Functions 3. Enter Safety Password, select Parameter 4. Send the Parameter - press "Send" one time Nr. and enter the appropriate Value ? 🗙 Safety Safety ? 🗙 Parameter no.: Parameter no 1 Value: Value: • [0] Function X10.22 Acknowledging+Quick 💌 [0] Function X10.22 Acknowledging+Quick 💌 No function Acknowledging+Quick Stop Acknowledging x 10 ms O [1] Active delay time C [1] Active delay time Quick Stop C [2] STO-Power On test C [2] STO-Power On test $\overline{\nabla}$ ○ [xx] ○ [xx] 1 Acknowledging+Quick Stop Acknowledging Send Send Correction Correction Safety Safety Change Password Change Password Password: Password: Protocol file Close Protocol file <u>C</u>lose 4. When the vellow display is correct - press 5. When the parameter display is green, it the "Acknowledge" button twice to accept confirms that the value is correct, has been stored and power loss protected in the drive Safety ? 🗙 unit! Parameter no.: Value: Once all of the relevant safety data [0] Function X10.22 Acknowledging+Quick 💌 parameters have been entered, then it is C [1] Active delay time x 10 ms possible to call up the protocol form of the actual safety parameter settings by pressing 🔿 [2] STO-Power On test \mathbf{v} the "Protocol file" button. ○ [xx] (ACROBAT Reader is required!) 1 | Acknowledging+Quick Stop Note: Acknowledging Send Correction Safety A copy of the Safety-Parameter-Protocol Form Change Password is available in the appendix of the Servo Drive Password: Handbook and can be used for verification purposes. Protocol file Close

EASYRIDER Safety Parameter Data Entry Dialog Boxes

9

• Safety Parameter List

The following safety functions are presently able to be configured:

- Parameter 0: Function Input X10.22
- Parameter 1: Active-Time Delay
- Parameter 2: STO-Power-On-Test

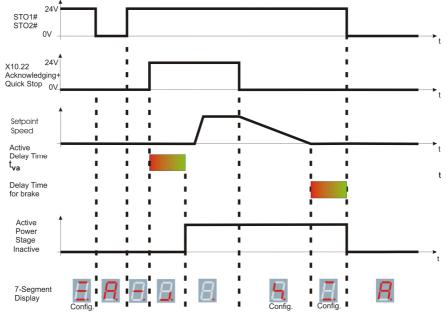
Parameter 0	Value Range	Explanation	Note	Flow Chart
	Without Function	No safety relevance. Function X10.22 is freely programmable (BIAS) Initial Factory Settings (default values)		
Function	Acknowledgement + Emergency Stop	STO-function activation through additional low→high edge of the X10.22 input acknowledgement and Emergency Stop before the STO shutdown through additional high→low edge of the X10.22 input.	See below	
X10.22	Acknowledgement	STO-function activation through additional low→high edge of the X10.22 input acknowledgement.	After the recognition of the edge – the active time delay will be started!	
	Emergency Stop	Before the STO shutdown through additional high→low edge of the X10.22 input.	After the recognition of the edge, when the rotational speed =0 then the emergency stop ramp will be executed and when the rotational speed =0, the time delay for the brake will be started!	

Parameter 1	Value Range	Explanation
Active-Time Delay (in 10 ms increments)	4 Initial Factory Settings (Default Value) 4- 500 (*10 ms)	Time delay for the activation of the final stage after acknowledgement (24 V) of both STO inputs, for example of the acknowledgement inputs (in the event that they have been configured). Note: If the STO inputs, for example, the acknowledgement inputs are removed (0V) before the expiration of the active time delay, then the time will be reset and only reactivated with a new edge (24 V).

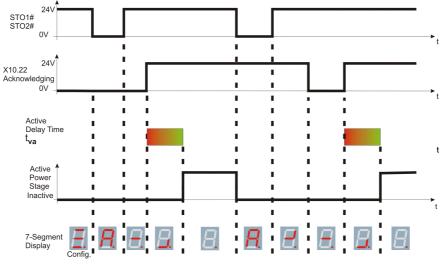
Parameter 2	Value Range	Explanation
STO-Power-On- Test	activate (0),(default) deactivate (1)	The STO-Power-on-Test does not allow by deactivated STO (STO1# and STO2# High) to activate the drive. The 7-Segment-Display shows . The drive will able to activate after the safety function STO was activated and is deactivate. The safety function could activated by a safety gate or an emergency stop It is possible to use a PLC to automate this test.

Safety Password

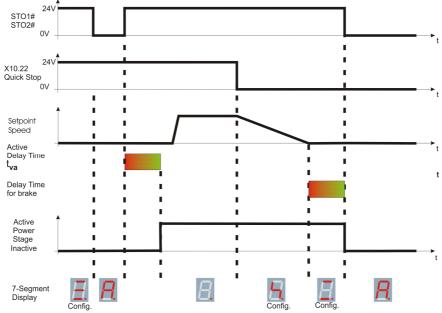
The safety password must be entered in the appropriate field, every time that the Safety Parameter Configuration screen is selected.


The password is always comprised of 4 letters.

The difference between large and small case letters is recognized.


The drive side initial factory setting of the password is "SAFE".

The responsibility to set the new safety password lies with the operator of the equipment. The new safety password should only be shared with authorized personnel, for example: anyone who works on the STO, and/or has responsibilities in the areas of equipment operating guidelines or equipment safety and security.


Flow Chart Diagram: Function X10.22 Acknowledgement + Emergency Stop

Flow Chart Diagram: Function X10.22 Acknowledgement

Flow Chart Diagram: Function X10.22 Emergency Stop

9.4 Application Example of STO (Safe Torque Off)

Minimal request of safety function by Cat. 3 and PL d

The safety function STO must activate for at least weekly.

This request is very important for application continuous operation and is satisfy by open the guard door and activate the emergency stop. If the Safe torque off is activate very often, additional measures are not necessary.

(Only if the Guard door and/or the emergency stop is connected directly or via safety unit at the 638 X11).

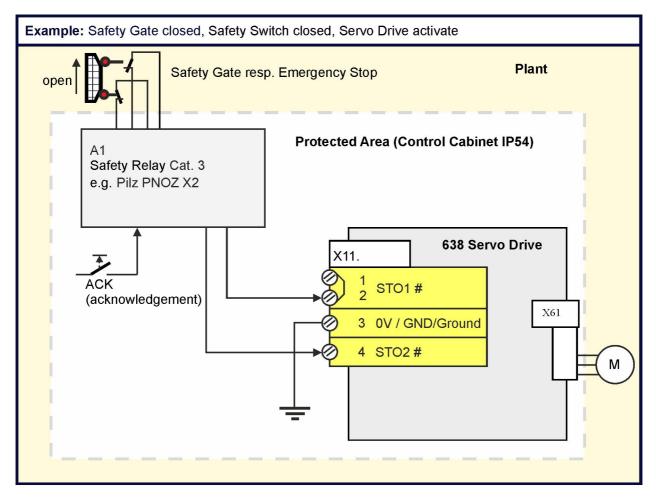
Additional Minimal request of safety function by Cat. 3 and PL e

The category 3 and PL e can only be attained if the STO-power on test is enabled.

The STO-power on test needs low-level at both STO# inputs by switch on the 24V control voltage. The drive can not activate if one or both STO-inputs have high-level. The function must configure in the Safety-Dialog parameter 2 (default Active).

These minimal requests are necessary to detect a failure. Failure detection is only possible if the safety function is activated.

Both measures could execute by a PLC.

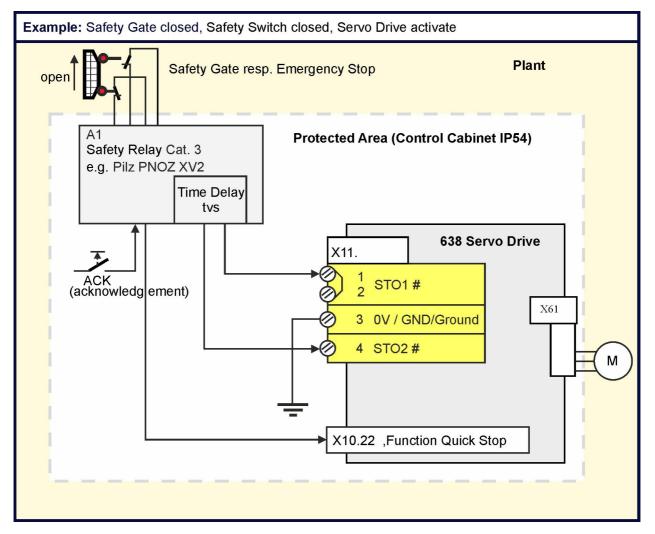

Example	Function	Protect EN 954-1	ion Level ISO 13849-1
Application Example 1	Safety door monitoring or emergency shut- down with protection monitoring switch	Cat. 3	PL e
Application Example 2	Safety door monitoring or emergency shut- down with protection monitoring switch and time delay	Cat. 3	PL e
Application Example 3	Safety door monitoring or emergency shut- down WITHOUT protection monitoring switch	Cat. 3	PL d
Application Example 4	Safety door monitoring or emergency shut- down with protection monitoring switch and time delay of several drives	Cat. 3	PL e

9

• Application Example 1

Function/Action	Response	Protectio EN 954-1	n Level ISO 13849-1	Stop Cat. According to EN60204
Safety door monitoring or emergency shut-down with protection monitoring switch	The ,STO' is tripped when the safety door is opened or emergency shut- down switch is activated.	Cat. 3	PL e	0

Important


The category 3 and PL e protection level can only be achieved with an active STO-Power-On-Test.

Note

• Application Example 2

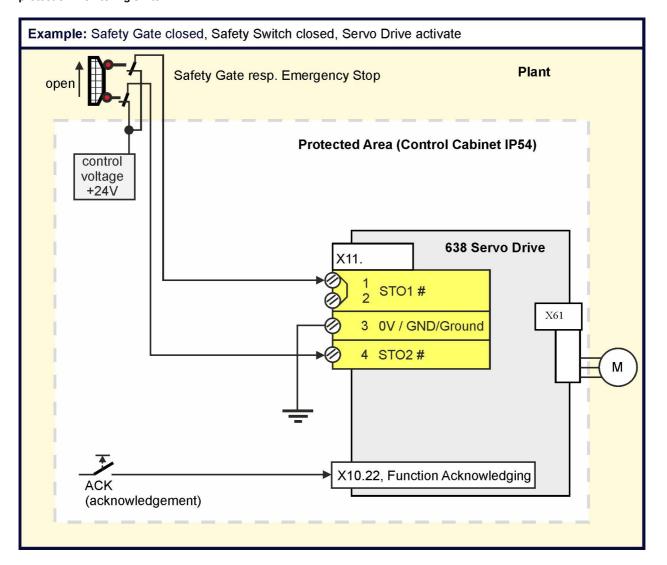
Function/Action	Response/Reaction	Protectio EN 954-1	n Level ISO 13849-1	Stop Cat. According to EN60204
Safety door monitoring or emergency shut-down with protection monitoring switch and time delay	Active braking occurs when the safety door is opened, the emergency shut- down switch is activated or tripping of the ,STO' occurs due to time delay.	Cat. 3	PL e	1

Important

The category 3 and PL e protection level can only be achieved with an active STO-Power-On-Test.

Explanation

The protection switch unit A1 must be set up with a fail-safe time delay as determined and required by the specific category relating to the application environment. The 638 Servo Drive must be properly configured for the operating environment

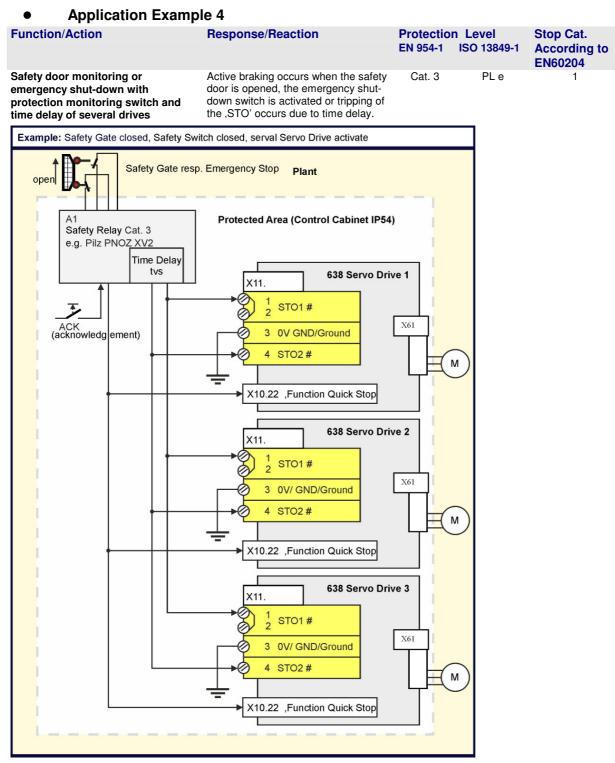

(See: Chapter Configuration and Parameter Settings).

Note

• Application Example 3

Function/Action	Response/Reaction	Protection Level EN 954-1 ISO 13849-1		Stop Cat. According to EN60204
Safety door monitoring or emergency shut-down WITHOUT protection monitoring switch	The ,STO' is tripped when the safety door is opened or emergency shut- down switch is activated.	Cat. 3	PL d	0

Explanation


The signals for STO1# and STO2# are delivered utilizing two separate channels. The wiring layout plan must allow for the physical separation of the wiring channels or incorporate adequate insulation protection and separation.

Note

The acknowledgement is only permissible with category B.

The acknowledgement is **not** permissible for use if the dangerous area is <u>accessible</u>. In this case, employment of an external acknowledgement unit is necessary.

Important

9

The category 3 and PL e protection level can only be achieved with an active STO-Power-On-Test.

Explanation

The protection switch unit A1 must be set up with a fail-safe time delay as determined and required by the specific category relating to the application environment.

The 638 Servo Drive must be properly configured for the operating environment

(See: Chapter <u>Configuration and Parameter Settings</u>).

Only 16 drives could plug together in a group.

Note

9.5 STO Function Test

The STO function must be tested when:

- The system is set-up for the first time. See: Commissioning
- Any component of the system is replaced.
- Any activity involving the wiring takes place.
- After all modifications to the drive system. (For example: parameter modifications, software updates, etc.)
- Established maintenance schedules dictate or after the machine has been inactive for a long period of time.

The STO functions test must be carried out by qualified personnel, with consideration for the required safety provisions.

Depending upon the system configuration and application, additional or other tests may be required.

Test Steps: <u>STO Test Step 1</u> <u>STO Test Step 2</u> <u>STO Test Step 3</u> <u>STO Test Step 4</u> <u>STO Test Step 5</u>

STO-TEST Step	1	Action / Function		Anticipated Res	Remark, Cause of Fault Condition	
STO-TEST 1.1	Prereq 1.1.1 1.1.2	uisite: Safety Parameter: STO "Power On" Test is Active Control Voltage off (0 V DC)		Safety Parameter-Nr.: Wert: C [0] Funktion X10.22 Johne Funktion C [1] Aktiv-Verzögerungszeit. 100 © [2] STO-Einschalttest Aktiv	x 10 ms	
STO-TEST 1.2	Termin	C Voltage to al X11.1 and al X11.4	1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6			If the safety parameter, "Start-up Test" – is deactivated, then the drive will be activated immediately after the switch is turned on!
STO-TEST 1.3	Switch	Control Voltage on (24 V DC)		H .	Test steps 2-4 can then be performed anyway.
STO-TEST Step	20	Action /	Function	Anticipated Result		Remark, Cause of Fault Condition
STO-TEST 2.1	-		1 2 3 4 5 6 11 X 3 4 5 6 11 X 01S	flash		
STO-TEST 2.2	Wait ap	oprox. 20 seconds	Check 7-Segment- Display	flash 月		
STO-TEST 2.3	After a	oprox. 20 seconds	Check 7-Segment- Display	Software-STO control moinitoring successful		
STO-TEST 2.4	Voltage	on 24 V DC e at al X11.1		Hardware- STO control function successful		

-Parker

Step	3 4	Function	Anticipated Result	Remark, Cause of Fault Condition
STO-TEST 3.1	Terminal X11.4 Test: Rebuild STO Test Step 1	Switch the 24V Supply Voltage Off→On		
STO-TEST 3.2	Switch off 24 V DC Voltage at Terminal X11.4	015 015 015 015 015 015 015 015 015 015	flash	
STO-TEST 3.3	Wait approx. 20 seconds	Check 7-Segment- Display	flash	
STO-TEST 3.4	After approx. 20 seconds	Check 7-Segment- Display	Software-STO control monitoring successful	
STO-TEST 3.5	Switch on 24 V DC Voltage at Terminal X11.4		Hardware- STO control function successful	

STO-TEST Step	4 🖌	Function	Anticipated Result	Remark, Cause of Fault Condition
STO-TEST 4.1	Terminal X11.1 and Terminal X11.4 Test: Rebuild STO Test Step 1	Switch the 24V Supply Voltage Off →On	Ξ.	
STO-TEST 4.2	Switch Off 24 V DC Voltage at Terminal X11.1 and Terminal X11.4	OTS X10 0 9 9 4 8 0 1 1 0 3 9 4 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	R	
STO-TEST 4.3	Wait approx. 20 seconds	Check 7-Segment- Display	R	
STO-TEST 4.4	After approx. 20 seconds Switch on 24 V DC Voltage at Terminal X11.1 and Terminal X11.4		If the drive has no fault and no other switch off condition is set - then the drive is activated.	

STO-TEST Step	5	Action / Function
STO-TEST	taken m The pro	I of the relevant safety test steps have been accomplished, the actions just be documented. tocol form can be found in the Appendix <u>Safety - Parameter - Report - Proposal</u> .

9.6 Signal Inputs Technical Data - Terminal Connection X11

General	The technical data provided in the section <u>General Technical Data</u> is valid, with the exception of the data listed below.
Nominal Voltage from the Inputs	24 V DC
Required Insulation from the Control Voltage 24V	protective extra-low voltage (PELV)
STO – Control Voltage Protection	1A
Number of Inputs Signal Inputs via Opto-Coupler	2 L = 07 V DC or open H = 1530 V DC I _{in} at 24VDC: 8 mA
STO1#	L = STO activate H = STO deactivate
STO2#	L = STO activate H = STO deactivate
Break Time at Unequal Input Conditions	approx. 20 seconds
Function see Status Diagram	
PFH for Cat. 3 and PL d	1,01 x 10 ⁻⁷ h ⁻¹
PFH for Cat. 3 and PL e	4,29 x 10 ⁻⁸ h ⁻¹

PFH = Average probability of dangerous failure per hour

Note: OSSD Signals (Output Switched Signal Device) up to 500µs at STO-Inputs are allowed.

10.1 7-Segment-Display

Many sources of faults can be narrowed down with the diagnosis display.

Display	Explanation	Out	Output		S	Servo drive		
(Code) ⁴	Comment	Ready	Warni ng ²⁾	631	635/637	637+	637f/638	
00h	no display	off	off	V	V	V		
	any control voltage? external fuses ok?							
03h	system ready for operate	on	off	V	\square	\checkmark		
	drive ready, not active							
01h	drive active and ready for operate!	on	off	$\mathbf{\nabla}$	$\mathbf{\nabla}$	\checkmark		
	DC link voltage within the limits, power stage active, fault-free							
12h	internal STOP with serial deactivating	off	off	V	\checkmark	\square		
— .	activate drive via serial interface							
82h	drive of serial interface (bus interface) deactivated !	off	off	V	\square	\checkmark		
	only if bus interface is integrated							
90h	deactivated with delay time for the brake			A	N	$\mathbf{\nabla}$	\checkmark	
	deactivated via input.	on	off					
•	deactivated via serial command.	off	off					
92h	Active input is activated with switching on 24 V control voltage	off	off	A	M	V	V	
— .	switch enable X10. xx switch on 0 V and after that 24 V			X10. 7	X10. 22	X10.2 2	X10. 22	
46h	Under voltage of control voltage	off	off		\checkmark	V	V	
 .	Power supply switched on? Power supply o.k ? internal fuse o.k.? control voltage < 17 V				Ĩ			
60h	Under voltage in DC-bus < Ua low threshold	off	off	V	V	Ø		
 .	check power supply (power supply unit, wiring, fuse), check under voltage parameter							
DAh	feedback system error (e.g. resolver)	off	off	V				
L .	wiring to encoder system ok? encoder system supply ok?							
DAh	"flashing" Baselver Foodbackeveter From	off	off					
00h	Resolver - Feedbacksystem Error wiring to resolver system ok?						8.36	
DAh 6Eh	"flashing" HIPERFACE Feedbacksystem Error	off	off				√ 8.36	
H. 6Eh	wiring to HIPERFACE system ok? Check serial HIPERFACE channel							

Display	Explanation	Out	Output Servo drive				/e
(Code) ⁴	Comment	Ready	Warni ng ²⁾	631	635/637	637+	637f/638
F ^{2h}	I ² t- overload of the drive does the control loop oscillate? P-amplification too high mechanics stiff? requirements too high? is warning /8/ evaluated?	1)	ng ' 1)	V	V	Ø	V
6 6H	l ² t overload of the motor does the control loop oscillate? P-amplification too high mechanics stiff? requirements too high? is warning /8/ evaluated?	1)	1)	Ø	V	Ø	
B6h	over temperature of the output stage (> 90 °C) adequate cooling of the regulator? ambient temperature too high?	1)	1)	V	V	V	V
B6h	"flashing" Drive Simulation Mode active (Internal test mode)	1)	1)				⊠ 8.35
B. ^{3Eh}	over voltage on DC bus ballast module ok? adequate ballast module?	1)	1)	V	V	V	
B. ^{3Eh}	starts the device display immediately after switching on the 24V control supply with 6"(no reset) the device doesn't boot! Reason: Resets function defect, no Firmware on drive	1)	1)		V	V	V
EOh	chassis shorting and short circuit due to hardware motor cabling ok? digital-loops setup ok? short circuit to chassis in the motor? braking resistor: ohm- value too low? try to start fresh! send in for repair	off	off	V	V	V	V
8.	WARNING! Overload of the regulator I ² t or motor I ² t or temp output stage too high. If no reaction within approx. 3sec.it switches off with signals /3/, /4/ or /5/. Signal /8/ clears when there is no more danger or it is switched off mechanics stiff? defective bearings; cold grease? reduce requirements and creep to next possible STOP	on	1)		Ø	V	V
F6h	over temperature motor(NTC/PTC) check overload of the motor / cooling etc.	off	1)	V	V	V	
2Eh	motor temperature too high check overload of the motor / cooling etc.	on	1)	V		V	V
80h	ballast active Brake energy is removed	on	off	V	V	Ø	V
38h	Warning: I ² t ballast too high	on	on	V	V	V	V

Display	Explanation	Ou	tput Servo drive			/e	
(Code) ⁴	Comment	Ready	Warni ng ²⁾	631	635/637	637+	637f/638
	ballast resistance usage >90%						
7Ch	switch off ballast	off	off	V	V	V	Ø
I .	ballast resistance overloaded						
6Ch	X 300 – Module not inserted or wrong inserted or defect	off	off			V	V
 .	X 300 testing						
6Eh	X 300 – setting wrong	off	off			V	M
Π.	X 30 / X40 Counter-Configuration test in the EASYRIDER® Windows – Software						
1Ch	tracking window exceeded 3)	on		A	\checkmark	V	N
L .	only in operation mode position control, will be deleted with the next run-command						
1Eh	tracking error with switch off	on	off	V	\checkmark	V	V
[].	only in operation mode "position control"						
20h	limit switch + 3)	on	off	V	\checkmark	V	V
□ .	limit switch + X10. xx on 0 Volt, from Firmware 6.16			X10. 8	X10. 14	X10. 14	X10. 14
08h	limit switch - 3)	on	off	A	\checkmark	V	Ŋ
D.	limit switch - X10. xx on 0 Volt, from Firmware 6.16			X10. 9	X10. 15	X10. 15	X10. 15
9Eh	limit switch + / limit switch -	on	off	V	\checkmark	V	V
Ξ.	both limit switch X10. xx on 0 Volt, from Firmware 6.16			X10. 8 X10. 9	X10. 14 X10. 15	X10. 14 X10. 15	X10. 14 X10. 15
76h	memory-checksum-error	off	off	V	\checkmark	V	V
	try new start, store the value again						
B ^{76h}	Different Drive type on X300-xM Module	aus	aus				✓ 638 with X300 xM- Module only
62h	DC Bus Unterspannung < 100 V			V			
	-	1					
4Eh	1: internal software error, Watchdog	off	off	Ø			V
1	2: blinking: BIAS software error 1: Firmware version check	-					V
•	2: Bias program error fix	1					

Display	у	Explanation	Out	tput		S	ervo driv	/e
(Cod	de) ⁴	Comment	Ready	Warni ng ²⁾	631	635/637	637+	637f/638
	EEh	starting lockout RP SBT with 637f starting lockout STO1 and STO2 with 638 Terminal X290. 3/4 check with 637f	on	off				
	24h	TerminalX11. 1/4 check with 638 STO1 und STO2 Signale Difference>20 Seconds	off	off				638 only
 .		Switch Off /On Control Voltage						000 only
	26h	X10.22 Quickstop Ramp active	on	off				☑ 638 only
	42h	X10.22 low high slope missing	on	off				☑ 638 only
	2Ah	Max. speed overload	off	off				Ø
 .		check speed limits resp. setpoint speed						
\mathbf{P}	4Ah	CAN - Open 402 Sync Message error in Interpolated positioning mode	on	off	✓ 6.19c			√ 8.19d
E	9Ch	SSI – Encoder Error	on	off				√ 8.21
E.	9Ch	CAN1-BUS Error Flashing display Noise on bus or lane missing!	on	off				√ 8.33
	1Ah	CAN2 Bus Error						⊠ 8.36
- .		Flashing Display: Control loop synchronization between drives						
H .	CEh	Profibus-Module Error	on	off				⊠ 8.31
H .	ECh	Warning:setpoint current maximum limit reached and no actual current measurement (check motor connection)	on	off				√ 8.34
	30h	638 Active Delay time runs	on	off				☑ 638 only

Display		Explanation	Output		Servo drive			/e
(Code) ⁴		Comment	Ready	Warni ng ²⁾	631	635/637	637+	637f/638
E.	8Eh	638 SAFETY- Parameter Ram Error	off	off				☑ 638 only
8	C4h	638 X300 xM Module, Memory Error Firmware, Alteracode and Parameters missing	off	off				V
\blacksquare	44h	638 X300 xM Module, Memory Error Alteracode and Parameter- and BIAS-Data missing	off	off				638 only with X300 xM- Module
\underline{B}	04h	638 X300 xM Module, Memory Error Alteracode missing	off	off				
\square	40h	638 X300 xM Module, Memory Error Parameter- and BIAS-Data missing	off	off				
H	E2h	BIAS-PLC program command deactivates the drive	off	off				√ 8.41

1) Reaction to these errors chapter: "
Function diagrams from inputs and outputs"

2) With configuration corresponding chapter : "

Operating modes and pin functions"

3) Operating mode "Position Control" only

4) The display code you can get with the serial command "internal diagnosis 2" (0x26) in byte 16.

The error signals are shown as long as there is control voltage (Us), also when the power (DC-Bus) is switched off for safety reasons.

10.2 Reset of a Drive Trouble

A general precondition for correct execution of the Reset is the elimination of the error cause.

Possible error signals

The error signals of the drive can be reset via:

- 1. Control voltage OFF/ON,
- 2. the serial command "Drive Reset" 0x02 The host login must be occurred. The drive must be deactivated via the serial command "deactivate Drive" 0x00.
- 3. the fieldbus-command " Drive Reset" 0x16 (22 decimal) The host login must be occurred via the BUS command 0x01. The drive must be deactivated via the BUS command "deactivate Drive" 0x14. The fieldbus command "Drive Reset" with constant repetition of the fieldbus command 0x16 will be works-off only once.

(BIAS)

For further processing, it is necessary, meanwhile to send another control word (e.g. 0 status order).

- 4. Viva 0 1 flank on input X10.11 Precondition:
 - The input X10.11 is with function 1"Reset drive fault" configured (EASYRIDER® Windows Software)
 - There is no host login.
 - The input Active,(X10.22) is inactive (0V)
 - The signal must be present min. 250 ms
- 5. Viva 0 1 flank on input X120.1 Precondition:
 - The input X120.1 is with function 1"Reset drive fault" configured
 - (EASYRIDER[®] Windows Software)
 - There is no host login.
 - The input Active,(X10.22) is inactive (0V) 1)
 - The signal must be present min. 250 ms

Notice !!

After remove of the tracking error deactivation **L**, the warning message (tracking error) is active up to the next move command.

The error signal

(releasing before ready) can be reset by deactivation the drive.

10.3 Trouble-Shooting

The following list refers to faults which can occur during operation.

Display:

Error	Explanation and remedy		
no motor run despite current flow	motor mechanically blocked? motor brake released?		
motor runs unevently	check setpoint wiring check grounding and shielding too high P-amplification in the speed controller reduce value (with EASYRIDER [®] setting/speed control) too small I-time in the speed controller?		
no reaction of setpoint progression, despite	(with EASYRIDER [®] setting/speed control) Limit switch functions		
torque in standstill	effective (BIAS)		
no current flow; no torque despite activating the regulator correctly	motor cables interrupted? Is input "I extern" (X10.19) activated (config. menu) and not notched up? Iimit switch - input activated and not notched up?		
Interference symptoms with power frequency	Ground loops in setpoint or actual value wiring? Shieldings laid on both sides? Signal cables near high voltage cables?		
Motor takes up preferred positions after activation	Position encoder or motor cables with reversed poles? Resolver or Feedback- encoder incorrectly adjusted? Number of motor poles wrong matching? (config. menu)	1)	
Motor runs up immediately after activation although there is no setpoint	Motor cables or feedback- cables reversed? Encoder incorrectly adjusted?	1)	
	(e.g. Resolver)		
Motor reaches in idling cycle very different speed when running to the right or to the left	Feedback-Encoder incorrectly adjusted (e.g. Resolver)		

1) Display

mostly short after activating; before warning

11 Standards and Certifications

11.1 Compliance with Regulations, Limitations and Basic Conditions

European Directives			
EG Low-Voltage Guidelines	In accordance with EN61800-5-1		
2006/95/EC	Safety requirements – Electrical, thermal and energy.		
EG-EMC-Directive	EN 61 800-3, Emissions and immunity levels for		
2004/108/EC	Power drive systems.		

UL - Approved					
Underwriter Laboratory Standard	UL 508 C	Power Conversion Equipment			
Canadian Standards Association	C22.2 No.14 (only 638A)	Power Conversion Equipment			
UL File-No.	e235342				

Insulation Requirement				
Protection Class	EN 50 178	1		
Overvoltage Category	IEC 60364-4-443:1999	111		
Pollution Degree	EN 61800-2, 4.1.2.1	2		

Environmental Conditions				
General Environment	al	EN 61800-2		
Ambient Temperature Rating:				
Operations		IEC 60721-3-3	+ 5 bis +40 ℃, 3K3	
	Storage	IEC 60721-3-3	-25 bis +55 ℃, 1K4	
	Transport	IEC 60721-3-2	-25 bis +70 ℃, 2K3	
Allowable Humidity:				
	Operations	IEC 60721-3-3	<= 85% non-condensing, 3K3	
	Storage	IEC 60721-3-3	<= 95%, 1K4	
	Transport	IEC 60721-3-2	<= 95% at +40 ℃, 2K3	
Vibration:		EN60068-2-6	10 Hz \leq f \leq 57Hz sinusoidal	
		Test FC	0,075mm amplitude	
			57Hz ≤ f≤150Hz sinusoidal 1g	
			10 sweep cycles per axis	
			1 Oktave / Minute	
Air Pressure			86 kPa – 106 kPa	
Protection		EN 60529	IP20	
Altitude		Under <= 1000m above sea level with 100%		
		power rating		
		Over >1000m <= 2000m above sea level, decrease		
	the power rating by 1% per 100m 638B 03 Convention cooling			
Method of Cooling		0002 00	Convention cooling	
		All 638A,	Forced ventilation (internal fan)	
		638B05 /08 /10 /15		

EMC - Requirement				
		638A	638B	
EMC – Emission	EN 61 800-3	max. Motor	r cable length	
(Conducted)	First Environment C1	20m ¹⁾	2)	
EMC – Emission	First Environment C2	40m	20m	
(Radiated)	Second Environment C3		20m	
	EN 61 800-3			
	First Environment C1			
	First Environment C2			
	Second Environment C3			
EMC – Immunity	EN 61800-3			
Levels	(include EN 50081-2	3)	3)	
	and EN 50082-2)	meet	meet	
		meet	meet	
EMC – Emission	EN 61 800-3	Minimum standards for the Second		
(Conducted)	First Environment C1	Environment are kept to	Э.	
	First Environment C2			
	Second Environment C3			

¹⁾ for max. 100m motor cable length, use the drive with Option A (less leakage current) and the external filter Type LNF RA *230/12.

²⁾ With external Filter of the Serie LNFB, is a groupe RFI suppression for max. 4 Device with a overall

Motor cable length of 60m, possible.

³⁾ For the operation in the first environment with unlimited availability is a cabinet damping of at least 10 dB in the frequency range of 30-1000MHz necessary.

11.2 Conditions of utilization for UL certification 638A

- Temperature rating of field installed conductors shall be at least 60°C. Use copper Conductors only.
- Suitable for use on a circuit capable of delivering not more than 5000 rms symmetrical amperes, 240V ac maximum when protected by Branch circuit protection as below.
- > These Device needs Branch Circuit Protection (BCP) with the following nominal fuse ratings:

Model Number	Nominal Fuse Ratings
638A-01-3	6A
638A-02-3	6A
638A-04-3	10A
638A-06-3	15A

PARKER Hannifin recommends:

UL listed (JDDZ) Fusible cut-out Class K5, Class H Class J or Class CC, or UL listed (JDRX) renewable cartridgefuse Class H rated.

- > The maximum surrounding air temperature is 40° C.
- The drive provides internal motor overload protection. This must be set so that 200% of the nominal motor current is not exceeded.
- Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the National Electric Code and any additional local codes.
- > Aux. Control circuits for connection to "class 2" power supply only.
- > The device are only to be installed in a degree of contamination 2 environment (maximum).

11 Standards and Certifications

11.3 Conditions of utilization for UL certification 638B

- Temperature rating of field installed conductors shall be at least 60/ 75 °C. Use copper Conductors only.
- > Only for use in WYE 480/277V or 400V/230V supply sources.
- Suitable for use on a circuit capable of delivering not more than 5000 rms symmetrical amperes, 480V ac maximum when protected by Branch circuit protection as below.
- > These Device needs Branch Circuit Protection (BCP) with the following nominal fuse ratings:

Model Number	Nominal Fuse Ratings
638B-03	600Vac, 10A
638B-05	600Vac, 15A
638B-08	600Vac, 25A
638B-10	600Vac, 30A
638B-15	600Vac, 30A

UL listed (JDDZ) Fusible cut-out Class J or Class CC. PARKER Hannifin recommends Bussmann LPJ-Series or Littlefuse JTD-Series.

- > The maximum surrounding air temperature is 40° C.
- The drive provides internal motor overload protection. This must be set so that 600% of the nominal motor current is not exceeded.
- Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the National Electric Code and any additional local codes.
- > Aux. Control circuits for connection to "class 2" power supply only.
- > The device are only to be installed in a degree of contamination 2 environment (maximum)
- During the UL evaluation, only Risk of Electrical Shock and Risk of Fire aspects were investigated. Functional Safety aspects were not evaluated.
- > Motor overtemperature sensing is not provided and is required at installation.
- For 638B10 and 15A-Type: With S1 full load operation > 5,5KW the linechoke Block Transformer-Elektronik GmbH LR3 40-4/16 has to be used.

12.1 General Technical Data

Power Circuit

Galvanic Separation from the Control Circuit	in acc. with EN 61800-5-1/ UL 508C	
Specifications in accordance with	EN 61800-5-1 / UL 508C and cUL	
Short Circuit and to Frame Test for	min. 2000 releases	
Overvoltage Monitoring	max. 400V DC ±5V DC	
	max. 810V DC ±10V DC (638B/C)	
Undervoltage Monitoring	min. 15V DC; configurable	
Overheating Switch Off at	95 °C +/- 5%	
Clock Frequency Powerstage	638A: 9,5 kHz	
	638B/C: 4,75kHz / 9,5kHz	
Frequency of Current Ripple	9,5 kHz / 19 kHz	

Control Circuit

Galvanic Separation from the Power Circuit	in acc. with EN 61800-5-1 / UL 508
Further Information:	See: " Insulation Concept "

• Signal Inputs and Outputs - Connection X10

	1		
Additional Galvanic Separation from Power and Control Circuit			
Nominal Voltage of the In and Outputs	24 V DC		
Number of Outputs Signal Outputs via OPTO Coupler	5 U _{max} = 42,4V DC; I = 060 mA; short circuit proof, resistive load		
Signal Outputs via RELAY	U _{max} = 42,4V DC; I = 1uA1,2A		
Contact Protection with Inductive Load	internal varistor		
Number of Inputs Signal Outputs via OPTO Coupler	8 L = 07 V DC or open H = 1530 V DC I _{in} 24VDC: 8 mA		
Shortest Time for a Signal to All Inputs - to Accept the Signal in an Application:	> 1 ms		
Damping of the Transfer from Low to High (0>24V):	fast input: 20μs (X10.4, X10.25)	default input: 200µs	
Interrupt Response Time for Fast Input	10µs (X10.4, X10.25)		
Damping of the Transfer from High to Low (24>0V)	fast input: default inp 250µs (X10.4, X10.25) 1000µs		

Analog - outputs

measuring pin X10.17

signal range	-10V0+10V magnifier function can be normed
resolution	10 bit, independend of norming
internal resistance	1,64 kOhm

• measuring pin X10.6

signal range	-10V0+10V magnifier function can be normed
resolution	8 bit, independend of norming
internal resistance	1,64 kOhm

Thermo-Control X30

No galvanic Separation to the Control Circuit	
Measurement Voltage at 100 / 1640 / 9999 Ohm	0,15V / 1,7V / 3,8V
Measurement Range	1009999Ohm, short-circuit proof (Thermo switch evaluable)

• Thermo-Control X62

Galvanic Separation to the Control Circuit Galvanic Separation to the Power Circuit	Basic Isolated in acc. with EN 61800-5-1 Double Isolation in acc. with EN 61800-5-1	
Measurement Voltage at 100 / 1640 / 6000 Ohm	0,15V / 1,7V / 3,2V	
Measurement Range	10060000hm, short-circuit proof	
	(Thermo switch evaluable)	

Brake-Control X62

Galvanic Separation to the Control Circuit / - Power Circuit	Basic Isolation in acc. with EN 61800-5-1	
Nominal Voltage Supply	24V DC	
Max. Brake Current	2A (for UL conditions Imax. = 1.2A)	
Contact Protection for inductive Load	Internal Varistor (BR+ <-> BR-)	

• Signal Inputs and Outputs - Connection X120B resp. 120C

	1		
Additional Galvanic Separation from Power and Control Circuit			
Nominal Voltage of the In and Outputs	ominal Voltage of the In and Outputs 24 V DC +20% / -10%)
Number of Outputs			
Signal Outputs via OPTO Coupler	resistive load Imax. = 2A		
	inductiv	ve load max. 1	lHenry
	I _{out} .	Inductance	Max. Switching
			Frequency
	1A	1H	1Hz
	1A	0,1H	10Hz
	0,33A	1H	10Hz
	0,2A	0,5H	50Hz
	short-circuit current limite over-heating protection, overvoltage clamping (50		n, active
Number of Inputs Signal Outputs via OPTO Coupler	4 L = 07 V DC or open H = 1530 V DC I _{in} at 24VDC: 8 mA		
Shortest Time for a Signal to All Inputs to Accept the Signal in an Application:	> 1 ms		
Damping of the Transfer from	default input:		
Low to High (0>24V):	200µs		
Damping of the Transfer from	default input:		
High to Low (24>0V)	1000µs		

Digital Control

Current Control	
Loop-Cycle-Time	105 μs
Settings	according to factory specifications or motor data
Current Limits - Adjustment by:	speed control -menu
	Analog Input
	010V = 0100%; can be standardized, 10Bit

Speed Control	
Loop-Cycle-Time	105 μs
Settings	speed control menu
Differential Setpoint Input Analog	U _{soll} = 10 V, can be normed; R _i = 10k
Resolution (including sign)	14 bit
Digital Setpoint Input	via interfaces

Position Control	
Loop-Cycle-Time	105 μs

Digital Communication

RS232 - Service Interface	COM1
	19200 baud, 8 data bits, 1 start bit, 1 stop bit, parity: even
<u>Optional</u>	
RS232 / RS422 / RS 485 on SUB D – Socket	COM2
CAN1, Profibus DP, SUCOnet K on SUB D – Socket Interbus S on SUB D – Socket (OUT)	
Interbus S (Remote IN) CAN2	additional on SUB D – socket

• X30 Resolver Evaluation / Transmitter Principles

<u>General:</u> The specified data refers to the combination of the standard resolver interface with Function Module - X300_RD2; operated with the Resolver R 21-T05, R15-T05					
Maximum cable length without usage of the Resolver cable KIR-B / KIR-G-UL	100m, with motor series ACM, ACR, ACG, ACS, NX, EX, SMH, SMB				
Carrier Frequency	f _t = 4,75 kHz				
Ripple of the Actual Speed Value Signal	2% ¹⁾				
Max. Position Resolution for One Revolution	65536 / 16 bit				
Absolute Position Accuracy	+/- 0,7 ° ¹⁾				
Relative Position Accuracy	+/- 0,08 ° ¹⁾				

¹⁾ Data was checked – actual data results: Quality improved

• X30 Endat Evaluation

Connector type:	SUB D 09 female				
Baudrate:	625 kBaud				
Maximum cable length without usage of the sense function: 1)	0,5mm ² : 30m 0,34mm ² : 20m 0,25mm ² : 15m 0,14mm ² : 8m				
Maximum cable length with usage of the sense function: 1)	80m				
Output voltage without usage of the sence function: 2)	5,28V DC				
Supply voltage at feedback sensor with usage of the sense function:	5,09V DC				
Voltage compensation:	max. 2 x 2,5V DC				
Max. Output current 5V DC:	350mA				
Input resistor sense:	20k Ohm				
In-/Output signals:	Driver Type MAX481 or compatible, RS422				
Differencial Logic-Level:	L ≤ 0,5V H ≥ 2,5V				
Differencial Input-Level:	Diff min. = +/-0,2V				
Internal termination resistor, data channel:	120R				
 Generally a cable cross-section of >=0,34mm² is recommended for the supply line! If the sense input is not connected the voltage control is calculated internal. 					

Controller System

System Start-Up Time after Switching On the Control Voltage	max. 6 seconds
Data Memory / Organization	Flash Eprom 256 KB RAM 64 KB; EEPROM 96 kByte

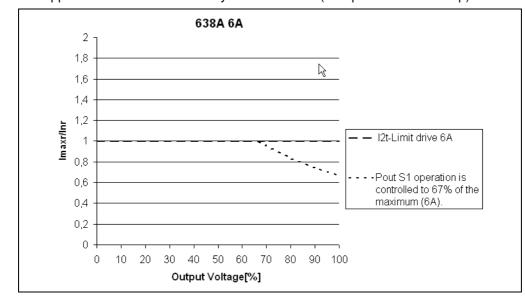
Mechanical Data

Dimensions	see " <mark>■ Dimensions</mark> "			
	638A	638B03 /05	638B08 /10/15	
Weight	1,6 Kg	2,7Kg	4,4Kg	

12.2 Technical Unit Data

• 638A

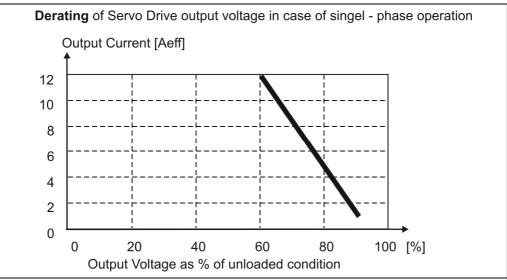
Servo Drive	T			638A01	638A02	638A04	638A06
Input							
Supply Voltage 5060 Hz		min.	[V]	14			
(grounded at the centre		Un	[V]			30	
point TN networks)		max.	tolerance			0%	
Phases	1)					r 3	
Supply System				"	Fuse, Cont	actors, Filter	
Inrush Current Limitation		type			: capacitor - p		
Control Voltage	2)	Ús	[V]			24 29	
Control Current Incl. Fan Permanent: Inrush peak:		ls DC	[A] [A/ms]	nor	nominal 0,4 r minal 3 maxim	maximum 0,8 1um 6/0,8; 2,5	5/25
Output							
Sine Voltage with Un		Unr	[Veff]			20	
Derating of Unr				Depend	ding on load o	r with 1-phase	
Rated Current Efficiency		Inr	[A]	1	2	4	6
Max. Current Efficiency	1)	Imaxr	[A]	2	4	8	12
Time for Imax	''		Sec	5	5	5	5
Min. Motor Inductance (terminal / terminal)		Lph/ph	[mH]	10	6	3	2
Brake Circuit							
Operating Point DC		Ub	[V]		37	75	
Max. Power		Pbmax	[kW]		5	,5	
Rated Power		Pbnenn	[W]		60	00	
Internal Brake Resistor		Rbint Pd Pmax	[Ω] [W] [W]	170 20 830			
Min. Ext. Brake Resistor	2)	Rbextmin	[Ω]	33 (use only our approved types)			es)
General	1				•	••	
Power Loss Fan, Electronics		max.	[W]	17			
Fan Control			[V]		2-stage	control	
Power Loss Rating Class per A		nominal	[W/A]		7 (4,75kHz)	/ 9 (9,5kHz	


¹⁾ Reference "<u>• Output Power</u>"

²⁾ Recommended: Transformer power supply

Output Power 638A

In the event of continuous operation in the full-load range, the limits as shown in the following diagram need to be respected for the 6A device. If the line supply is singlephase in this condition, a line-choke with uk>=4% is necessary. For example E12-0018KL. This is valid for the 4A and 6A device. Typical servo applications are not affected by this restriction. (S3 operation: Start/Stop).



• Singlephase and Threephase supply

Due to the line-ripple of the DC-Bus, the rate of usable output voltage is reduced as follows. This reduction affects the maximum attainable speed of the applied motor.

Three-phase supply: The unloaded output voltage will be reduced to approx. 90%, maximally 85 %

Single-phase supply: 50 – 60Hz: see following Diagram:

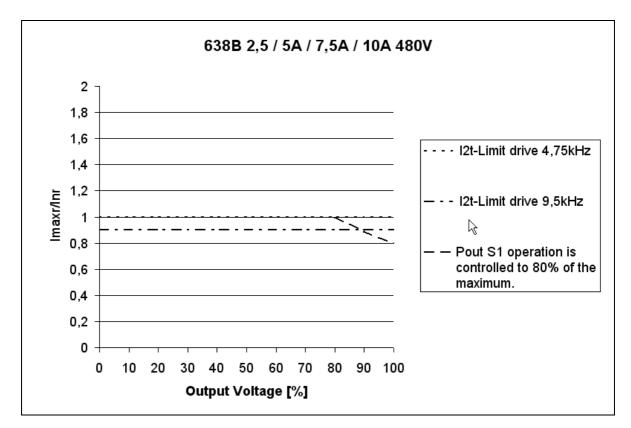
Hint for Parameterization:

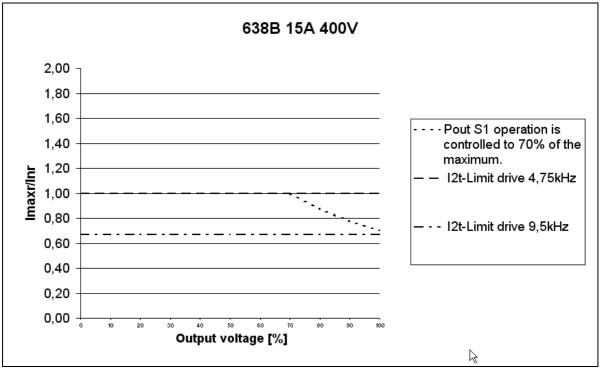
To avoid the unexpected tripping of the under voltage threshold, the parameter setting should be left on the default values (EASYRIDER[®] Windows – Software). Required motor-terminal-voltage for specified speed.

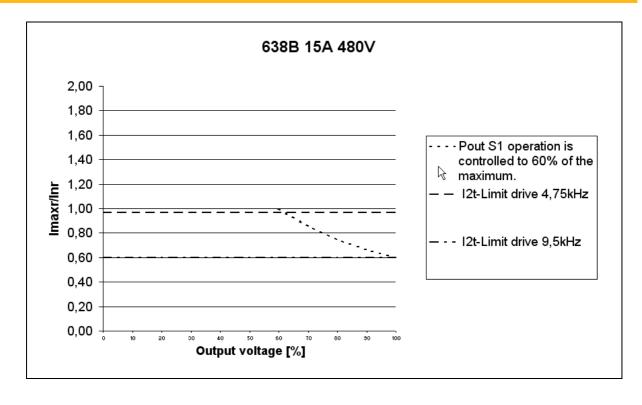
Approximation:(up to 3000RPM)Ukl = 1,2 * (EMF * n / 1000) + I * (Rph + RL) [V]UklRequired Motor Voltage [V $_{RMS}$]EMFBack-EMF of Motor [V $_{RMS}$] / 1000 RPMRphResistance of Motor (between terminals) [Ω]RLLine Resistance of Motor cable [Ω]IMotor Current [A $_{RMS}$]

638B •

Servo-Drive				638B03	638B05	638B08	638B10.	638B15
Input				000200	000200	000000	000010.	000010
Supply Voltage 5060 Hz		min.	[V]			14		
(grounded at centre point		Un	[V]			230 /400 /480		
TN – networks)		max.	tolerance			-25% / +10%		
,	1)							
Phases	• /		-		" 5	3		
Supply System						<u>er Mains Conr</u>		
Inrush Current Limitation	2)	type	0.0	So		itor – pre-cha		0Ω
Control Voltage	3)	Us	[V]			1,5 24 2		
Control Current nominal/maximal	0)	Is DC	[A]	0,6 /		0,7 / 1,1	0,8 /	1,2
Control Current Inrush peak:		Is DC	[A/ms]		nominal	3 maximal 6/0	,8; 2,5/25	
Output			D ((0				-	
Sine-Voltage with Un		Unr	[Veff]			220 /388 / 465		
Minderung von Unr						rding to the lo	,	
Rated Current 230V AC/ 4,75kHz		Inr	[A]	2,5	5	7,5	10	15
Rated Current 230V AC/ 9.5 kHz		Inr	[A]	2,5	5	7,5	10	12
Rated Current 400V AC/ 4,75kHz		Inr	[A]	2,5	5	7,5	10	15
Rated Current 400V AC/ 9.5 kHz		Inr	[A]	2,5	5	7,5	10	10
Rated Current 480V AC/ 4,75kHz		Inr	[A]	2,5	5	7,5	10	14,5
Rated Current 480V AC/ 9,5kHz		Inr	[A]	2,5	4,5	6,8	9	9
Max. Current efficiency	1)	Imaxr	[A]	5	10	15	20	30
Time for Imax	•/	minimal	Sec	5	5	5	5	5
Min. Motor Inductance 4,75kHz 230V AC		Lph/ph	[mH]	5	2,5	1,6	1,2	1,2
Min. Motor Inductance 4,75kHz 400V AC		Lph/ph	[mH]	8,9	4,5	3,3	2,2	1,5
Min. Motor Inductance 4,75kHz 480V AC		Lph/ph	[mH]	10	5,0	3,0	2,5	1,7
min. MotInduktivität 9,5kHz 230V AC		Lph/ph	[mH]	2,5	1,2	0,8	0,6	0,6
Min. Motor Inductance 9,5kHz 400V AC		Lph/ph	[mH]	4,4	2,2	1,5	1,1	0,7
Min. Motor Inductance 9,5kHz 480V AC		Lph/ph	[mH]	5,0	2,5	1,7	1,2	0,8
Brake Circuit								
Operating Point DC		Ub	[V]			675 / 760		
Max. Power 230V AC		Pbmax	[kW]	3,	6	5,6	13	3,2
Max. Power 400V AC		Pbmax	[kW]	6,		9,8		2
Max. Power 480V AC		Pbmax	[kW]	7,		10,9		 5,5
Rated power		Pbnenn	[W]	. ,		1100		,-
Internal Brake Resistor		Rbint	[Ω]	68	80		330	
		Pd	[W]	1			30	
230V / 400V / 480V AC		Pmax	[W]	207 / 67		42	26 / 1380 / 17	50
min. ext. Brake Resistor 230V/400/480V	4)	Rbextmin	[Ω]	41 / 78	8 / 87	27 / 54 / 62	11 /22 /24	11 /22 /24
General		•				-	-	-
Power Loss Fan, Electronics		maximal	[W]	24	4	26,4	28	3,8
Fan Control			[V]			24		
Power Loss			1.1		9.4 (230V/4	75kHz), 12 23	30V/9.5kHz)	
Rating Class per A		nominal	[W]		1,5 (400V/4,7	75kHz), 15,8 (75kHz), 16,8 (400V/9,5kHz)	

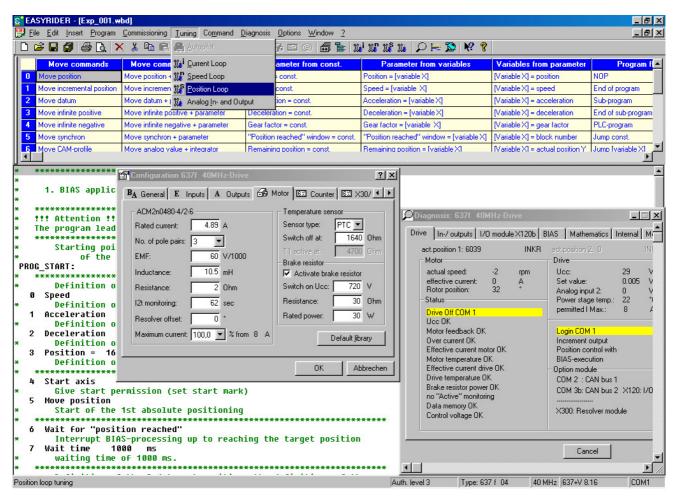

¹⁾ Reference "<u>• Output Power 638B</u>"
 ²⁾ Recommended: Transformator power supply




• Output Power 638B

In the event of continuous operation in the full-load range, the limits as shown in the following diagram need to be respected. Typical servo applications are not affected by this restriction. (S3 operation:Start/Stop).

At mains voltage 400V no restriction of the output power on the devices withstands 5 / 7,5 / 10A.



13.1 EASYRIDER[®] Windows - Software

EASYRIDER[®] Windows software is a useful and convenient tool to use to control all drive functions. Detailed online help information and instructions are available.

EASYRIDER[®] Instructions: (extract)

- **O** Auto pilot function as an interactive tutorial
- O System identification
- O BIAS instruction-set editor
- O Oszilloscope function
- O Start-up and commissioning tools
- O Setting of parameters and setting of configurations
- O Servo diagnostics, interface diagnostics and fieldbus diagnostics
- Motor library
- O Save system data in file and load system data from file
- O Send system data to servo drive and save system data in servo drive
- O Load system data from servo drive

Important:

Edited data in EASYRIDER[®] is transmitted to the RAM of the servo drive and becomes **active only after** executing the **SEND** command. **Only the instruction** "**SAVE in EEPROM**", writes data into a non volatile memory. Data is stored there in the event of power failure.

13 Software

13.2 Introduction BIAS Editor

The selection of the <u>Operating Mode 5</u> with the Drives 630 Serie activates the complete functionality of all control loops and the BIAS-program processing.

The EASYRIDER Software is the programming tool to create, load and save the BIAS Programs.

The programming language "BIAS"

<u>B</u>edienersprache für <u>intelligente</u> <u>A</u>ntriebs – <u>S</u>teuerungen

was developed to allow the programming of complex and yet clear programs. Therefore the BIAS commands were divided according to their function into the 12 following command groups:

- 0. <u>Move command</u>
- 1. Move command + parameters
- 2. <u>Parameter commands</u>
- 3. "Parameter from variables" commands
- 4. "Parameter into variables" commands
- 5. <u>Control commands</u>
- 6. Flag commands
- 7. <u>In-/ output commands</u>
- 8. <u>Variable commands</u>
- 9. <u>Mathematics commands 1</u>
- 10. Mathematics commands 2
- 11. Floating point commands

With these commands you will be able to program the required machine process in chains of steps The size of a program is limited to a maximum of 1500 BIAS commands

The design of the programs occurs with EASYRIDER software at the PC and can be transmitted into the servo drive via serial communication.

If you create the BIAS program with the **EASYRIDER** shell, jump labels, comments and a unit for the position presettings are provided.

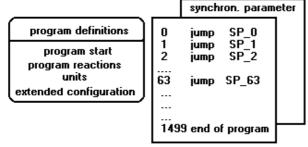
A further possibility is programming or transmitting and controlling the BIAS program via a field bus respectively. The necessary command coding is listed in the command instruction.

During the calculation of a BIAS-program is is possible to start parallel a PLC SPS-Task and/or a Mathematics-Task.

The PLC-Task is calculated parallel to the BIAS-Task and has a subset of the commands.

The Mathematik-Task is calculated in the interruptfree processing time of the drive and has also subset of the commands.

Profile value = [Variable X]
THe command is allowed in
the Math only.



BIAS – Command overview

• Program layout

A BIAS program consists of 3 basic memory areas.

- 1. The program definition:
 - contains all definitions for starting and processing a BIAS program, the entries for defining a unit for position presetting and the necessary configurations of the inputs and outputs.
- 2. The command memory: contains up to 1500 BIAS commands.
- 3. The synchronous parameters: contain the definitions for the 16 synchronous profile blocks and the 2048 supporting points.

The basic memory areas are part of the BIAS program. In the EASYRIDER for Windows Software the extension is *.WBD.

• Execute a BIAS program

With the selection of the default values in the <u>BIAS program definitions</u> the BIAS processing is started in operating mode 5 "position control with BIAS processing" after activating the output stage of the regulator. The first BIAS block to be executed is determined in the <u>BIAS program definition</u> (Parameter "program start"). Alternatively it is possible to select in the BIAS Program definitions the mode "Continue execution at deactivation from Deactive start" (as of firmware 8.41).

"Deactive start" defines the line number of the first command which is executed first after deactivation or reset with restart of the drive.

In this case the BIAS interpreter is in <u>protected mode</u>. Drive commands to the power stage are not allowed. However it is possible to control an other drive with the Multi-axis functionality of the 3 trajectory generators. Details see <u>BIAS Protected mode</u>.

Normally, the regulator processes one BIAS command sequentially every trajectory cycle.

With the BIAS command <u>"Execute x commands</u>" it is possible to calculate up to 9 commands in one trajectory cycle.

If the BIAS processing encounters a move command, it can be started with the Low-High slope of the start input.

Serie	Input	Configuration
635/ 637/637+/637f/638:	X10.11	"Start input BIAS" (Function 0)
631:	X10.9	" <u>Start input " (Function 3</u>)

Alternatively, move commands are started when the start identifier is set before the move command, via the BIAS command <u>"Start axis"</u>.

The following blocks will be processed after a successful start.

If the command, <u>"Wait for "position reached"</u> follows a move command, block processing will only be continued after the target position is reached.

Drive type:	Trajectory cycle:
631/635/637	1,899ms
637+/637f/638	0,844ms

13 Software

• Execute a PLC program

A cyclic PLC program for supervisory monitoring tasks can be started parallel to the sequential processing of a BIAS program

The PLC program is started by processing the BIAS command, "PLC program".

After the PLC program is activated the programmed PLC commands are processed as of the specified block number.

The command "end of program, mode = 0" within a PLC program causes a jump back to the start of the PLC program.

The regulator processes one PLC command sequentially every trajectory cycle.

PLC-Interruptsystem

The reaction of the PLC program to the deactivation of the output stage can be adjusted in the <u>BIAS program</u> <u>definition</u> (parameter "program reaction PLC program"). Thus it is possible to allow the PLC program to continue to process also during the deactivation of the regulator. Is in this mode the first command of the BIAS execution the command "PLC program" the PLC task starts automatically independently of the state (deactive/active) of the drive.

In the plc-loop not all of the BIAS commands are allowed.

In the command overview the allowed commands are listed.

The check of allowed commands is done by the drive during run time!

Drive type	Trajectory cycle
631/635/637	1,899ms
637+/637f/638	0,844ms

Execute a Mathematics program

A 3rd task as math program for supervisory calculation can be started parallel to the sequential processing of a BIAS program and/or PLC program.

The mathematics-program is started by processing the BIAS command, "**Mathematics program**". After the mathematics program is activated the programmed mathematics commands are processed as of the specified block number.

The command "end **of program, mode =0**" within a mathematic - program causes a jump back to the start of the mathematics program.

The command "end **of program, mode =3**" cancels the mathematics program.

MATH-Interruptsystem

The reaction of the mathematics program to the deactivation of the output stage can be adjusted in the BIAS program definition (parameter "program reaction mathematics program"). Thus it is possible to allow the mathematics program to continue to process also during the deactivation of the regulator.

In this mode the command "Mathematic program" is executed at the first or second line (if the PLC program is on line 1) of the BIAS program or at line 0, if the drive is not enabled.

The calculation of the mathematics commands is done in the interruptfree calculation time of the drive. In a standard application approx. 10 commands are processed every 2ms

Software

13.3 BIAS – Commands

	Position = co	nst.	[Variable X] = position	BIAS-execution	pointer [\	/ariable X] =flag Y	Profile value = [va	riable X]	Save table	PLC-progra	m	
Th	is command is only in the BIAS- t		his command is permitted he BIAS, PLC and MATH Task	in This command	is only Th PLC and permitt	is command is only ed in the BIAS and PLC -Task	This command is only in the MATH-T	permitted This	command is only ed in the MATH-Task	This command is only pe BIAS and MATI		
	0	1	2	3	4	5	6	7	8	9	Α	В
0	Move position	Move position + parameter	Position = const.	<u>Position =</u> [variable X]	[Variable X] = position	NOP	Flag X = const.	If input X ? const.	<u>[Variable X] =</u> <u>const.</u>	<u>Mathematic</u> program	<u>Table</u> [[variable X]] = const.	[D_Variable X] = [D_Variable Y]+ [D_Variable Z]
1	<u>Move</u> incremental position	<u>Move</u> incremental position + parameter	<u>Speed = const</u> .	<u>Speed =</u> _[variable X]	<u>[Variable X] =</u> <u>speed</u>	End of program	<u>If flag X ? const.</u>	If output X ? const	<u>If [variable X] ?</u> <u>const.</u>	<u>Profile</u> <u>initialization =</u> <u>const.</u>	<u>Table</u> [[variable X]] = _[Y_Variable Z]	[D_Variable X] = [D_Variable Y] - [D_Variable Z]
2	Move datum	<u>Move datum +</u> parameter	Acceleration = const.	<u>Acceleration =</u> [Variable X]	[Variable X] = acceleration	<u>Sub- program</u>	<u>Flag X =</u> <u>flag Y</u>	Output X = const.	[Variable X] = [variable Y] + const.	Profile cycle length = [variable X]	[X Variable Y]= Table [[variable Z]]	[D Variable X] = [D Variable Y] * [D Variable Z]
3	<u>Move infinite</u> <u>positiv</u> e	<u>Move infinite</u> <u>positive +</u> <u>parameter</u>	Deceleration = const.	Deceleration = [variable X]	[Variable X] = deceleration	End of Sub-program	<u>Flag X =</u> input Y	<u>Output X =</u> <u>flag Y</u>	[Variable X] = [variable Y] – <u>const.</u>	<u>[Variable X] =</u> <u>profile</u> value	[W_Variable X] = [Y_Variable Z]	[D_Variable X] = [D_Variable Y] / [D_Variable Z]
4	<u>Move infinite</u> <u>negativ</u> e	<u>Move infinite</u> <u>negative +</u> <u>parameter</u>	<u>Gear factor = const.</u>	<u>Gear factor =</u> [Variable X]	[Variable X] = gear factor	PLC-program	<u>Flag X =</u> output Y		[Variable X] = [variable Y] * const.	<u>Profile value =</u> [variable X]	[X Variable Y] = const.	If [D_Variable X] ? [D_Variable Y]
5	<u>Move</u> synchron	Move synchron + parameter	<u>"Position reached"</u> <u>window = const</u> .	<u>"Position reached"</u> window =[variable X]	[Variable X] = block number	Jump const.	<u>Flag X =</u> <u>flag Y & flag Z</u>		[Variable X] = [variable Y] / cons	<u>L</u>	<u>[Variable [X]] =</u> <u>const.</u>	[D_Variable X] = SIN {[D_Variable Y]}
6	<u>Move CAM</u> <u>profil</u> e	<u>Move analogue</u> <u>value +</u> <u>integrator</u>	Remaining position = <u>const.</u>	Remaining position = [variable X]	[Variable X] = actual position Y	Jump [variable X]	<u>Flag X =</u> <u>flag Y ∣ flag Z</u>		<u>[Variable X] =</u> <u>flag Y</u>		<u>[Variable [X]] =</u> [variable Y]	[D Variable X] = COS {[D Variable Y]}
7	Synchronous settings 1	<u>Move speed +</u> integrator	Ramp filter = const., [variable X]	M <u>aximal current =</u> [variable X]	[Variable X] = analogue input Y	BIAS-Execution pointer = const.	<u>Flaq X =</u> <u>flag Y ^ flag Z</u>		[Variable X] = [variable Y].bit Z number	Save table	<u>[Variable [X]] =</u> [variable Y]	[D Variable X] = SQRT {[D Variable Y]}
8	Synchronous settings 2	<u>Move speed +</u> <u>variable</u>	Actual position X = $\frac{\text{const.}}{\text{const.}}$	<u>Actual position X =</u> [variable Y]	[Variable X] = latch position Y	Wait for "position reached"	<u>Flag X =</u> <u>! flag Y</u>	IBT- mask number : const.	<u>[Variable X] =</u> [variable Y]		<u>[Variable X] =</u> [variable Y] ? [variable Z]	[<u>D_Variable X] =</u> ASIN {[D_Variable Y]}
9	<u>Move PID;</u> <u>speed</u>	Execute PID	If actual position X ? const.	<u>Analogue output X = [variable Y]</u>	[Variable X] = actual speed Y	<u>Wait time = const.</u>	<u>Flag X = status Y</u>	IBT- notification number = const.	If [variable X] ? [variable Y]		<u>[Variable X] =</u> [variable Y] ? <u>const.</u>	[D Variable X] = ACOS {[D Variable Y]}
Α	<u>Move PID;</u> <u>t</u> orque	<u>Cycle length =</u> <u>const.</u>	If actual position X ? [variable Y]	PID scaling	<u>[Variable X] =</u> latch status Y	<u>Wait time =</u> [variable X]	If status X ? const.	<u>CAN Command =</u> [variable X]	[Variable X]= [variable Y] + [variable Z]			[D_Variable X] = ATAN {[D_Variable Y]}
в	<u>Set point</u> [axis no.] = <u>const.</u>	<u>Cycle length =</u> [variable X]	<u>Sensor window =</u> <u>const.</u>	<u>Sensor window =</u> [variable X]	[Variable X] = position Y: <u>axis no.</u>	BIAS-execution pointer = [variable X]	<u>Mode X = const.</u>	IBT- data transfer	<u>[Variable X]=</u> [variable Y] - [variable Z]			[D_Variable X] = EXP {[D_Variable Y]}
с	<u>Set point</u> [axis no.] = [variable X]	Load parameter set X = [variable[Y]]	<u>Sensor position =</u> <u>const.</u>	<u>Sensor position =</u> [variable X]	<u>[Variable X] =</u> value Y	<u>Jump [var.[X]];</u> length = const.; from	<u>Flag X =</u> [variable Y]	CAN2 Command = [variable X]	[Variable X]= [variable Y] * [variable Z]			[<u>D_Variable X] =</u> LOG {[D_Variable Y]}
D	<u>Move relativ</u> e		<u>adjustment 1 =</u> const.	<u>Sensor</u> adjustment 1 = [variable X]	<u>[Variable X] =</u> <u>axis status,</u> axis no. Y	Execute X commands	[Variable X]. bit[Y] = const.		[Variable X]= [variable Y] / [variable Z]			[<u>D_Variable X] =</u> LOG10 {[D_Variable Y]}
Е	<u>Start axis</u>		<u>Sensor</u> adjustment 2 = <u>const.</u>	<u>Sensor</u> adjustment 2 <u>=</u> [variable X]	<u>[Variable X] =</u> <u>parameter</u> Y, axis no. Z		<u>If [var. X]. bit Y ==</u> _ <u>const. then jump</u>		[Teachvariable X] = [variable Y]	<u> </u>		[<u>D Variable X] =</u> POW {[D Variable Y], [D Variable Z]}
F	<u>Stop axis</u>	<u>Stop axis</u> <u>+</u> parameter	Update parameter	PID parameter		Virtual program	Axis state, axis no. X, bit Y = const., [flag Z]		[Variable X] = [teachvariable Y]			[<u>D Variable X] =</u> ATAN2 {[D Variable Y], [<u>D Variable Z]}</u>

Command group "Move commands" Command group "Program control commands"

Command group "Parameter commands" Command group "Variable commands" Command group "Flag commands" Command group "Conditional jump commands"

Command group "Mathematic commands" Command group "Output commands" Command group "CAN- Commands" Command group "637f commands"

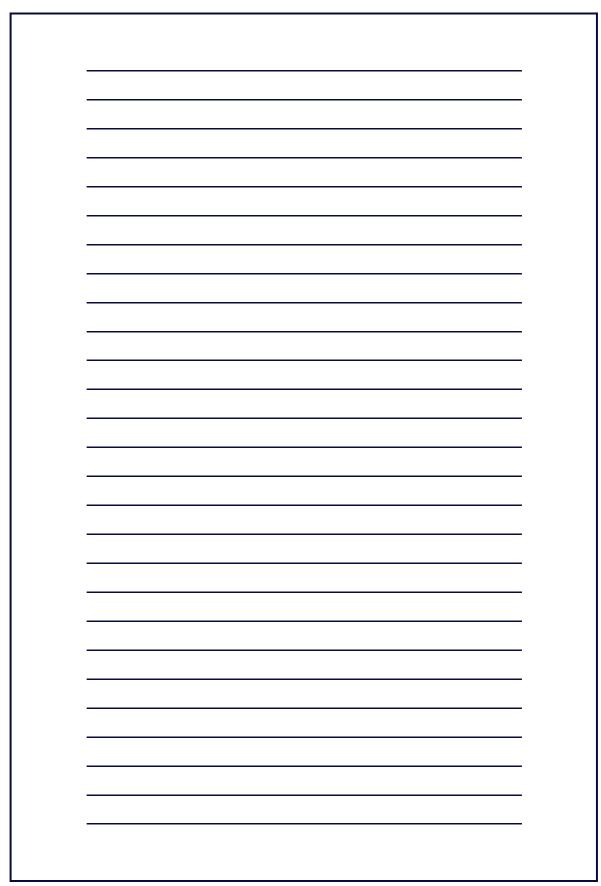
14 Appendix

14.1 STO - Safety - Parameter - Report - Proposal

1 General Information

Checked according to	STO inspection instruction:	
Project / Machine:		
Drive name:		
Inspector name:		

2 Safety - Parameter Configuration


Parameter-No.	Parameter description	Parameter value	
		no Function	
	-	Acknowledgement	
0	Function X10.22	+ Quick Stop	
		Acknowledgement	
		Quick Stop	
1	Active-deceleration time	x 10ms	
_		deactivate	
2	STO-Power On test	activate	
TO Eunction	test according to manua	I; Step 1 checked	
	i lest according to manua	i, Step i checkeu	
(638 Product M	anual 07-02-12-02-E, Chapter STC	D) Step 2 checked	
(638 Product M	anual 07-02-12-02-E, Chapter STC	D)Step 2 checkedStep 3 checked	
(638 Product M	anual 07-02-12-02-E, Chapter STC		
	anual 07-02-12-02-E, Chapter STC ment according as config	Step 3 checked Step 4 checked	
		Step 3 checked Step 4 checked	
		Step 3 checked Step 4 checked	
		Step 3 checked Step 4 checked juration; successful checked	
Acknowledge		Step 3 checked Step 4 checked juration; successful checked not used	
Acknowledge	ment according as config	Step 3 checked Step 4 checked juration; successful checked not used	
Acknowledge	ment according as config	Step 3 checked Step 4 checked juration; successful checked not used ;	
knowledge	ment according as config	Step 3 checked Step 4 checked juration; successful checked not used ; successful checked	

Acceptance test date:	In-service inspection date:
Signature inspector	Signature inspector
	Date:
	Signature inspector

3

4

Version	Modification	Chapter	Date	Name	Comment
V0106	preliminary version	-	07.04.2006	N. Dreilich	
V0206	preliminary version	-	-	-	
V0306	final version	-	21.08.2006	N. Dreilich	
V0406	STO - expansion		28.09.2006	N. Dreilich	New Photos
V0507	Intenal Version	-		N. Dreilich	
V0608	complete 638B	-	17.07.2008	N. Dreilich	Phase
V0710	complete	-	08.03.2010	N. Dreilich	(UL-638)
V0911	UL-number, 638A07	-	10.10.2011	T.Saladin	
V1014	X10.17/6 Resitorvalue,1.64 Ohm Extension for Fuses UL Class J,	12	08.03.2012		
	Class CC	5.4,11	15.07.2014	T.Saladin	
V1115	Cross-section for 638B UL- requirements. Linechoke Block, Fuses classJ UL-chapter for 638B+Tab. UL Approved changed Umax for Dig Out changed to 42,4V OSSD signals for STO	2.14 5.4 11.1, 11.2.11.3 12.1 9.6.	16.02.2015	T.Saladin	UL 638B
V1215	Corrections in 638B UL- requirements.	2.14 11.1, 11.2.11.3	09.04.2015	T.Saladin	UL 638B

EMAC s.r.o. Kasarenska 2404/26 911 05 Trencin SLOVAKIA