

aerospace climate control electromechanical filtration fluid & gas handling hydraulics pneumatics process control sealing & shielding

Economical Planetary Gearheads

ENGINEERING YOUR SUCCESS.

Marning – USER RESPONSIBILITY

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

- This document and other information from Parker-Hannifin Corporation, its subsidiaries and authorized distributors provide product or system options for further investigation by users having technical expertise.
- The user, through its own analysis and testing, is solely responsible for making the final selection of the system and components and assuring that all performance, endurance, maintenance, safety and warning requirements of the application are met. The user must analyze all aspects of the application, follow applicable industry standards, and follow the information concerning the product in the current product catalog and in any other materials provided from Parker or its subsidiaries or authorized distributors.
- To the extent that Parker or its subsidiaries or authorized distributors provide component or system options based upon data or specifications provided by the user, the user is responsible for determining that such data and specifications are suitable and sufficient for all applications and reasonably foreseeable uses of the components or systems.

Economical Planetary Gearheads - PE

Overview	5
Layout / Features	6
Technical Data	7
Dimensions	9
Order Code	10

Parker Hannifin

- the global leader in motion and control technologies

A world class player on a local stage

Global Product Design

Parker Hannifin has more than 40 years experience in the design and manufacturing of drives, controls, motors and mechanical products. With dedicated global product development teams, Parker draws on industry-leading technological leadership and experience from engineering teams in Europe, North America and Asia.

Local Application Expertise

Parker has local engineering resources committed to adapting and applying our current products and technologies to best fit our customers' needs.

Manufacturing to Meet Our Customers' Needs

Parker is committed to meeting the increasing service demands that our customers require to succeed in the global industrial market. Parker's manufacturing teams seek continuous improvement through the implementation of lean manufacturing methods throughout the process. We measure ourselves on meeting our customers' expectations of quality and delivery, not just our own. In order to meet these expectations, Parker operates and continues to invest in our manufacturing facilities in Europe, North America and Asia.

Worldwide Manufacturing Locations

Europe

Littlehampton, United Kingdom Dijon, France Offenburg, Germany Milan, Italy

Asia

Shanghai, China Chennai, India

North America

Rohnert Park, California Irwin, Pennsylvania Wadsworth, Ohio Charlotte, North Carolina New Ulm, Minnesota

Offenburg, Germany

Local Manufacturing and Support in Europe

Parker provides sales assistance and local technical support through a network of dedicated sales teams and authorized technical distributors throughout Europe.

For contact information, please refer to the Sales Offices on the back cover of this document or visit www.parker.com

Milan, Italy

Littlehampton, UK

Manufacturing
 Parker Sales Offices
 Distributors

Dijon, France

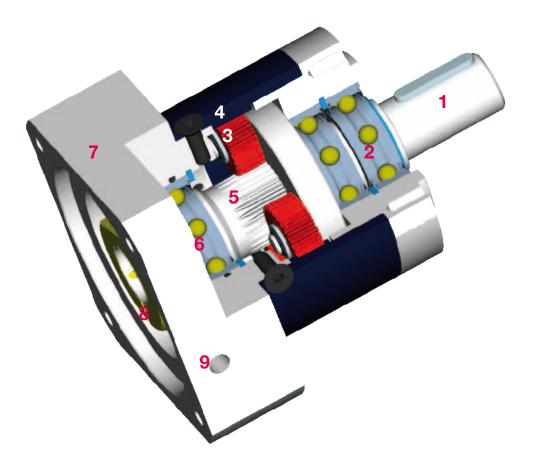
Economical Planetary Gearheads - PE

Overview

Description

The PLE is the perfect economy alternative to the PS gearbox. This planetary gearbox was especially designed for all applications where a considerably low backlash is not of vital importance.

Features


- Excellent price/performance ratio
- Input speeds up to 8000 min⁻¹
- Low backlash
- High output torques
- PCS-2 system
- High efficiency (96 %)
- 22 ratios i=3...512
- Low noise
- High quality (ISO 9001)
- Any fitting position possible
- Simple motor fitting
- Life time lubrication
- Direction of rotation equidirectional
- Balanced motor pinion

Technical Characteristics Overview

Features	Unit	Division
Geometry		Planetary Gearheads
Туре		Inline
Drives sizes	[mm]	60, 90, 115
Maximum input speed	[min ⁻¹]	up to 13000
Nominal torque	[Nm]	260
Radial force	[N]	up to 2400
Service life	[h]	30 000
Backlash	[arcmin]	< 8

Layout / Features

1 Output shaft

The input shaft is case-hardened and offers a very good torsional rigidity.

2 Output shaft bearing

Double ball bearings distribute the load evenly which results in a high radial and axial load bearing capacity.

3 Planet wheel

Case-hardened and precision ground.

4 Annulus gear in the housing

Case-hardened and precision ground.

5 Sun gear

Case-hardened and precision ground.

6 Sun gear bearing

The integral sun gear allows precise mounting within a few minutes. The inside of the gearhead is protected against contamination.

7 Mounting flanges

The gearheads are available with motor flanges for a variety of common servo and stepper motors.

8 Clamping bushing

Consists of clamp collar and clamp screw.

The proven clamped joint for the motor shaft with even pressure distribution ensures safe torque transmission even at high loads.

9 Fitting aperture

Easy access for tightening and loosening the clamped joint.

Technical Data

Parameter	Unit	Ratio		PE3	PE4	PE5
			3	28/45	85/136	115/184
		1 step	4	38/61	115/184	155/248
		i step	5	40/64	110/176	195/312
			8	18/29	50/80	120/192
			9	44/70	130/208	210/336
			12	44/70	120/192	260/416
			15	44/70	110/176	230/368
Nominal torque			16	44/70	120/192	260/416
T _{nom r} /		2 step	20	44/70	120/192	260/416
Maximum permissible			25	40/64	110/176	230/368
acceleration torque T _{acc r}	[Nm]		32	44/70	120/192	260/416
• • • • • • • • • • • • • • • • • • • •			40	40/64	110/176	230/368
T _{nom r} / T _{acc r}			64	18/29	50/80	120/192
(1)(2)(3)(4)			60	44/70	110/176	260/416
			80	44/70	120/192	260/416
			100	44/70	120/192	260/416
		3 step	120	44/70	110/176	230/368
			160	44/70	120/192	260/416
			200	40/64	110/176	230/368
			256	44/70	120/192	260/416
			320	40/64	110/176 50/80	230/368
	(b) 1		512	18/29		120/192
Emergency off torque T _{em r} ⁽⁵⁾	[Nm]	0			le nominal torque	
		3		4450	2400	2550
		4		4400	2300	2500
		5		4500	2800	2500
Nominal drive speed at 100 %		8		4500	4000	3500
T _{nom r}	[min ⁻¹]	9		4500	2900	2650
N _{nom r} ⁽⁶⁾		12		4500	4000	2650
		15		4500	3350	3200
		16		4500	4000	3100
		20512		4500	4000	3500
Maximum drive speed N _{max r} ⁽⁶⁾	[min⁻¹]	3	512	13000	7000	6500
Maximum radial force Pr _{max} ^{(1) (7)}	[N]			340	1700	2400
Maximum axial force Pa _{max} ^{(1) (7)}	[N]			450	2000	2100
Service life	[h]			30000 (lifetime lubrication)		
		(1 s	tep)	< 12	< 8	< 8
Backlash	[arcmin]	(2 step)		< 15	< 12	< 12
		(3 step)		< 18	< 14	< 14
		(00)				

(1) the data refer to an output shaft speed of n₂=100 min⁻¹ and application factor KA=1 as well as S1 operating mode for electrical machines and T=30 °C
 (2) dependent on the respective motor shaft diameter

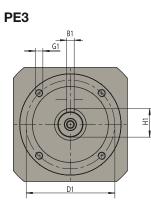
⁽³⁾ with keyway: for dynamic loads

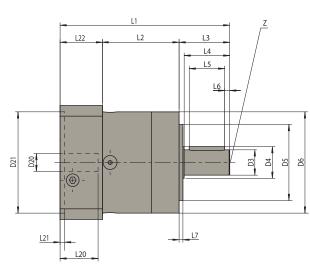
(4) permitted for 30 000 revolutions of the output shaft

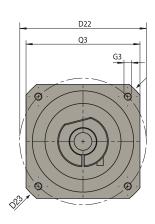
⁽⁵⁾ permitted 1000 times

⁽⁶⁾ permitted operating temperatures may not be exceeded.

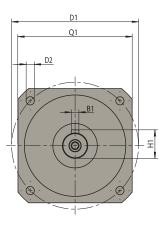
(7) referred to the center of the output shaft

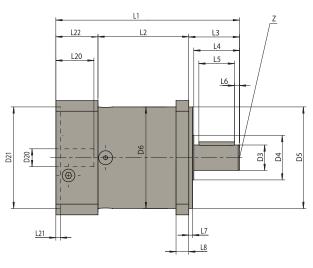

Economical Planetary Gearheads - PE Technical data

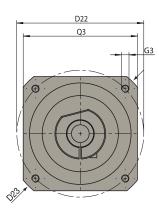

Parameter	Unit	Ratio		PE3	PE4	PE5	
		(1 step) (2 step)		96			
Efficiency at nominal torque ⁽⁸⁾	%			94			
		(3 s	tep)	90			
Noise level at 3000 min ^{-1 (9)}	[dB (A)]			58	60	65	
		(1 s	tep)	2.3	6	12	
Torsional rigidity	[Nm/arcmin]	(2 s	tep)	2.5	6.5	13	
		(3 s	tep)	2.5	6.3	12	
Operating temperature ⁽¹⁰⁾	[°C]			-25 +90			
Lubrication				L	_ifetime lubricatio	n	
Orientation					any		
Direction of Rotation					same as input		
Product Enclosure Rating					IP54		
			3	13.5	77	263	
		1 step	4	9.3	52	179	
		. etep	5	7.8	45	153	
			8	6.5	39	132	
			9	13.1	74	262	
			12	12.7	72	256	
			15	7.7	71	253	
			16	8.8	50	175	
		2 step	20	7.5	44	150	
			25	7.5	44	149	
Moment of inertia ⁽¹¹⁾	[kgmm ²]		32	6.4	39	130	
	10 1		40	6.4	39	130	
			64	6.4	39	130	
			60	7.6	51	257	
			80	7.5	50	150	
			100	7.5	44	149	
			120	6.4	70	250	
		3 step	160	6.4	39	130	
			200	6.4	39	130	
			256	6.4	39	130	
			320	6.4	39	130	
			512	6.4	39	130	
			tep)	0.9	3.2	6.6	
Weight	[kg]		tep)	1.1	3.7	8.6	
		(3 step)		1.3	4.2	10.6	


⁽⁸⁾ depends on the ratio, $n_2=100 \text{ min}^{-1}$ ⁽⁹⁾ Noise level at a distance of 1 m; measured at a drive speed of $n_1=3000 \text{ min}^{-1}$ without load; i=5 ⁽¹⁰⁾ referred to the center of the housing surface ⁽¹¹⁾Inertia refers to the input shaft and to the standard motor shaft diameter D20

Economical Planetary Gearheads - PE Dimensions


Dimensions





PE4, PE5

	ensions in mm	PE3	DEA		
B1 K		mm PE3 PE4 PI			
	Keyway DIN 6885 T1	5	6	8	
D1 F	Flange bolt circle	52	100	130	
D2 N	Mounting bore	-	6.5	8.5	
D3 S	Shaft diameter	14	20	25	
D4 S	Shaft collar	17	35	35	
D5 C	Centering	40 80 11		110	
D 6 ⊦	Housing diameter	60	80	115	
D20 ⊦	Hole	9	14	19	
1121	Centering diameter for notor	40	80	95	
D22 B	Bolt circle	63 100 115		115	
D23 D	Diagonal dimension	80 115 14		145	
G1 T	Tapped hole x depth	M5x8		-	
G 3 T	lapped hole x depth	Depending on the adapter flange (see table with the motor-gearbox combinations)			
H1 K	Keyway DIN 6885 T1	16 22.5 28			

			Fi	rame siz	e
All di	All dimensions in mm			PE4	PE5
		1 step	106.5	145	201.5
L1	Overall length	2 step	119	162.5	229.5
		3 step	131.5	180	257
		1 step	47	71.5	99
L2	Housing length	2 step	59.5	89	127
		3 step	72	106.5	154.5
L3	Input shaft end	35	40	55	
L4	Shaft end to co	30	36	50	
L5	Length of keyw	25	28	40	
L6	Distance to shaft end		2.5	4	5
L7	Pilot		3	3	4
L8	Flange width		-	10	15
L20	Shaft length mo	otor	23	30	40
L21	Centering drive		2.5	3.5	3.5
L22	Motor flange length		24.5	33.5	47.5
Q1	Flange cross section		-	90	115
Q3	Flange cross section		60	90	115
z	Centering bore DIN332, sheet 2, form DR		M5x12	M6x16	M10x22

Order Code

PE Gearheads

		1	2	3	4		5	6	7	8	9
Ord	er example	PE	3	003	10		М	038	063	06	20
1	Gearhead T	уре				6	Pilot di	ameter			
	PE Economy planetary gearbox						038	38 m	m		
2	Gearhead S	ize									
	3	PE3					130	130m	ım		
	4 PE4					7	Distanc	e between h	oles		
	5	PE5					063	63 m	m		
3	3 Ratio										
	003	3 3				165	165 n	nm			
					8	Shaft diameter					
	512	512					06	6 mm	I		
4	Output shaf	ť					•••				
	10	Input shaft	with keywa	у			24	24 m	m		
5	5 Motor connection flange			9	Motor	shaft lengt	h				
	М						20	20 m	m		
							50	50 m	m		

Motor Gearhead Combination

	Motor 1	Motor 2	Motor 3	Order Code (Gearhead)	Mounting thread G3
	SMH60/B08/09		MH056/B05/09	PE3 XXX 10 M 040/063/09/20	M5
			MH056/B05/11	PE3 XXX 10 M 040/063/11/23	M5
PE3	SMH60/B05/11		MH070/B05/11	PE3 XXX 10 M 060/075/11/23	M5
PES			MH070/B05/14	PE3 XXX 10 M 060/075/14/23	M5
	SY56 (NEMA 23)			PE3 XXX 10 M 038/066/06/21	M5
	SY87 (NEMA 34)			PE3 XXX 10 M 073/098/09/32	M6
	SMH60/B05/11		MH070/B05/11	PE4 XXX 10 M 060/075/11/23	M5
	SMH82/B08/14			PE4 XXX 10 M 080/100/14/30	M6
PE4	SMH82/B08/19		MH105/B09/19	PE4 XXX 10 M 080/100/19/40	M6
PE4	SMH82/B05/19	SMH100/B05/19	MH105/B05/19	PE4 XXX 10 M 095/115/19/40	M8
	SY107 (NEMA 42)			PE4 XXX 10 M 055/125/15/32	M8
	SY87 (NEMA 34)			PE4 XXX 10 M 073/098/09/32	M6
	MH105/B09/19			PE5 XXX 10 M 080/100/19/40	M6
	SMH82/B05/19	SMH100/B05/19	MH105/B05/19	PE5 XXX 10 M 095/115/19/40	M6
PE5	SMH100/B05/24		MH105/B05/24	PE5 XXX 10 M 095/115/24/50	M8
	SMH115/B05/24		MH105/B06/24	PE5 XXX 10 M 110/130/24/50	M8
			MH145/B05/24	PE5 XXX 10 M 130/165/24/50	M10

Bold = Preferred motor gearhead combinations Only for motors with mounting bores (no mounting thread)

Parker's Motion & Control Technologies

At Parker, we're guided by a relentless drive to help our customers become more productive and achieve higher levels of profitability by engineering the best systems for their requirements. It means looking at customer applications from many angles to find new ways to create value. Whatever the motion and control technology need. Parker has the experience, breadth of product and global reach to consistently deliver. No company knows more about motion and control technology than Parker. For further info call 00800 27 27 5374.

AEROSPACE Key Markets

- Aircraft engines
- Business & general aviation Commercial transports
- Land-based weapons systems
- Military aircraft
- Missiles & launch vehicles
- Regional transportsUnmanned aerial vehicles

Key Products

HYDRAULICS

Key Markets

Aerospace

Agriculture

Construction machinery

· Power generation & energy

Industrial machinery

Truck hydraulics

Key Products

Diagnostic equipment

Hydraulic motors & pumps

· Hydraulic valves & controls

Rubber & thermoplastic hose

• Tube fittings & adapters

· Quick disconnects

Hvdraulic cylinders

& accumulators

Hydraulic systems

Power take-offs

& couplings

Aerial lift

• Forestry

Mining

• Oil & das

- Flight control systems & components
- Fluid conveyance systems
- Fluid metering delivery
- & atomization devices
- Fuel systems & components Hvdraulic systems & components
- Inert nitrogen generating systems
- · Pneumatic systems & components
- Wheels & brakes

CLIMATE CONTROL

Key Marke Agriculture

- Air conditioning
- · Food, beverage & dairy
- · Life sciences & medical Precision cooling
- Processing
- Transportation

Key Products

- CO² controls Electronic controllers
- Filter driers
- · Hand shut-off valves
- Hose & fittingsPressure regulating valves
- Refrigerant distributors
- Safety relief valves Solenoid valves

PNEUMATICS

Key Markets

Factory automation

Life science & medical

· Packaging machinery

Transportation & automotive

Food & beverage

· Machine tools

Key Products

Air preparation

Grippers

Manifolds

· Compact cylinders

· Guided cylinders

Miniature fluidics

· Rodless cylinders

Rotary actuators

Tie rod cylinders

Pneumatic accessories

· Pneumatic actuators & grippers

Pneumatic valves and controls

Vacuum generators, cups & sensors

· Field bus valve systems

Conveyor & material handling

Aerospace

Thermostatic expansion valves

ELECTROMECHANICAL

Key Markets Aerospace

- Factory automation
- Food & beverage
- Life science & medical
 Machine tools
- · Packaging machinery
- Paper machineryPlastics machinery & converting
- Primary metals
- Semiconductor & electronics
- Textile • Wire & cable

- Key Products AC/DC drives & systems
- · Electric actuators
- Controllers
- · Gantry robots
- Gearheads Human machine interfaces
- Industrial PCs
- Inverters
- Linear motors, slides and stages
- · Precision stages
- Stepper motors
 Servo motors, drives & controls Structural extrusions

PROCESS CONTROL

Chemical & refining

Medical & dental

Microelectronics

Power generation

Key Products

& regulators

• Oil & gas

· Food, beverage & dairy

Analytical sample conditioning

Fluoropolymer chemical delivery

· High purity gas delivery fittings, valves & regulators

Instrumentation fittings, valves

Medium pressure fittings & valves

products & systems

fittings, valves & pumps

· Process control manifolds

Key Markets

FILTRATION

 Food & beverage Industrial machinery

Mobile equipment

Power generation

• Transportation

Key Products

Analytical gas generators

Compressed air & gas filters

Condition monitoringEngine air, fuel & oil filtration

A systems
Hydraulic, lubrication &

• Process, chemical, water

Nitrogen, hydrogen & zero

& microfiltration filters

coolant filters

air generators

• Life sciences

Key Ma

Marine

• Oil & gas

Process

SEALING & SHIELDING

- **Key Markets**
- Aerospace Chemical processing
- Consumer
 Energy, oil & gas
- Fluid power
- General industrial Information technology
- Life sciences
- Military
- Semiconductor
- Telecommunications
- Transportation

Key Products

- Dynamic seals
- · Elastomeric o-rings EMI shielding
- · Extruded & precision-cut,
- fabricated elastomeric seals Homogeneous & inserted
- elastomeric shapes
- High temperature metal seals
- · Metal & plastic retained
- composite seals
- Thermal management
- 11

FLUID & GAS HANDLING

- Key Markets
- Aerospace Agriculture
- Bulk chemical handling
- Construction machinery
- Food & beverage
- Fuel & gas delivery
- Industrial machinery
- Mobile • Oil & gas
- Transportation
- Welding

Kev Products

Industrial hose

& couplings

- Brass fittings & valves
- Diagnostic equipment Fluid conveyance systems

• PTFE & PFA hose, tubing &

plastic fittings • Rubber & thermoplastic hose

• Tube fittings & adapters

• Quick disconnects

We reserve the right to make technical changes. The data correspond to the technical state at the time of printing. © 2011 Parker Hannifin Corporation.

EMAC s.r.o. Kasarenska 2404/26 911 05 Trencin SLOVAKIA

192-753013N2

October 2011

Parker certified distributor 🖀 +421 32 3810 232

- info@emac.sk
- www.emac.sk